首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycomplex formation of α-Amylase from Aspergillus oryzae (TAKA) with polyacrylic acid (PAA) was studied by pH titration, fluorescence, and high performance liquid chromatography (HPLC) methods in water solutions. Acording to the our results, the complex formation and its solubility were depended on nature of enzyme and the pH of solutions. Both of them correlates isoelectric points (PI). The stability of PAA–amylase complexes was negligibly weak at pH 7 [pH > pI (isoelectric pH)]. Stable water-soluble polycomplexes were formed at pH 5 (pI ~4.5) and coexisted with free protein molecules. Insoluble complexes has been observed at pH < 4.5. The frozen storage stabilities of the obtained complexes were also studied by measuring the activities at different pH.  相似文献   

2.
Survey of seven strains determined as Septonema ochraceum (Dothideomycetes, inc. sed.) isolated from pine litter or obtained from public collections revealed three new species, Fusicladium cordae, F. sicilianum (Venturiaceae), Cladophialophora matsushimae (Herpotrichiellaceae) and a cryptic species morphologically identical to Devriesia americana (Teratosphaeriaceae), but phylogenetically distinct. Morphological survey and phylogenetic analysis using nucleotide sequence data from the nuclear ribosomal subunit genes indicate a close relationship within three species colonising pine litter needles, F. cordae, F. pini and F. ramoconidii. F. sicilianum is most related to F. rhodense. C. matsushimae represents a species belonging to one of the lineages of the polyphyletic genus Cladophialophora. None of the strains observed can be classified morphologically as S. ochraceum, of which the type material does not exist.  相似文献   

3.
Alpha-amylases are important industrial enzymes with a wide range of applications. Although medium-temperature alpha amylase (AmyE) has some practical advantages, its low yield has limited its applications. When an amyE gene from Bacillus subtilis BF768 was cloned into vector pWB980 and over-expressed in B. subtilis WB600, high activities (723 U ml−1) of secreted AmyE were produced. Recombinant AmyE was purified to a specific activity of 36 U mg−1 having optimal activity at pH 6.0 and 60°C.  相似文献   

4.
Bacterial variants of Staphylococcus aureus called small colony variants (SCVs) originate by mutations in metabolic genes, resulting in emergence of auxotrophic bacterial subpopulations. These variants are not particularly virulent but are able to persist viable inside host cells. SCVs show their characteristic auxotrophic growth deficiency and depressed α-cytotoxin activity. Environmental pressure such as antibiotics, select for isogenic SCV cells that are frequently found coexisting with their parent wild-type strains in a mixed bacterial culture. SCV strains often grow on blood agar as non-pigmented or pinpoint pigmented colonies and their key biochemical tests are often non-reactive. Their altered metabolism or auxotrophism can result in long generation time and thus SCV phenotype, more often than not SCV can be overgrown by their wild-type counterparts and other competitive respiratory flora. This could affect laboratory detection. Thus, molecular methods, such as 16S rRNA partial sequencing or amplification of species-specific DNA targets (e.g. coagulase, nuclease) directly from clinical material or isolated bacterial colonies, become the method of choice. Patients at risk of infection by S. aureus SCVs include cystic fibrosis patients (CF), patients with skin and foreign-body related infections and osteomyelitis, as they suffer from chronic staphylococcal infections and are subject to long-term antibiotic therapy. Molecular evidence of SCV development has not been found except for some random mutations of the thymidylate synthase gene (thyA) described in SCV S. aureus strains of CF patients. These variants are able to bypass the antibiotic effect of folic acid antagonists such as sulfonamides and trimethoprim. Resistance to gentamicin and aminoglycosides in the hemin or menadione auxotrophic SCVs was hypothesized as being due to decreased influx of the drugs into cells as a result of decreased ATP production and decreased electrochemical gradient on cell membranes.  相似文献   

5.
6.
7.
8.
A putative β-glucosidase gene from the genome of Bacillus halodurans C-125 was expressed in E. coli under the regulation of T7lac promoter. On induction with isopropyl-β-D-1-thiogalactopyranoside, the enzyme expressed at ∼40% of the cell protein producing 238 mg/liter culture. With increase in culture cell density to A 600 12 in auto-inducing M9NG medium, β-glucosidase production increased 3-fold. Approximately 70% of the expressed enzyme was in a soluble form, while the rest was in an insoluble fraction of the cell lysate. The soluble and active form of the expressed enzyme was purified by ammonium sulfate precipitation followed by ion-exchange chromatography to a purity >98%. The mass of the enzyme as determined by MALDI-TOF mass spectrometry was 51,601 Da, which is nearly the same as the calculated value. Phylogenetic analysis of the β-glucosidase of B. halodurans was found to cluster with members of the genus Bacillus. Temperature and pH optima of the enzyme were found to be 45°C and 8.0, respectively, under the assay conditions. K m and k cat against p-nitrophenyl-β-D-glucopyranoside were 4 mM and 0.75 sec−1, respectively. To our knowledge, this is the first report of high-level expression and characterization of a β-glucosidase from B. halodurans.  相似文献   

9.
In this study, the production of extracellular thermostable α-amylase by newly isolated thermophilic Alicyclobacillus acidocaldarius was detected on LB agar plates containing 1.0% soluble potato starch and incubated at 60°C. This extracellular α-amylase was purified to homogeneity by ammonium sulphate precipitation followed by Sephadex and ion-exchange chromatography. The α-amylase was purified to 8.138 fold homogeneity with a final recovery of 58% and a specific activity of 3,239 U/mg proteins. The purified α-amylase appeared as a single protein band on SDS-PAGE with a molecular mass of 94.5 kDa. Non-denaturing PAGE analysis showed one major band associated with enzyme activity, indicating the absence of isoenzymes. A TLC analysis showed maltose as major end product of the enzyme. The optimum assay temperature and pH for enzyme activity were 60°C and 6.0 respectively; however, the enzyme activity was stable over a wide range of pH and temperatures. The α-amylase retained its activity in the presence of the denaturing agents — SDS, Triton X-100, Tween-20, Tween-80, and was significantly inhibited by EDTA and urea. Calcium ions increased the enzyme activity, while Hg2+, Zn2+, and Co2+ had inhibitory effects. The K m and V max values were found to be 2.9 mg/mL and 7936 U/mL respectively.  相似文献   

10.
The aim of this study was to produce two isozymes of α-amylase by immobilization of a newly isolated soil bacterium. The bacterium was identified as Bacillus thuringiensis CKB19 on the basis of its 16S rRNA profile. Enzyme production by free cells increased linearly with cell growth up to 34 h in starch containing enriched liquid media. The active bacterial cells were immobilized in Caalginate beads, and operational stability of the entrapped cell was optimized for amylase production. Enzyme production was optimal at an alginate concentration of 2 g% (w/v), calcium chloride concentration of 1 M, and with 300 beads (each bead contained 2 × 107 cells)/250 mL flask. Amylase production by the immobilized cells was about 3 times higher than free cell fermentation after 34 h of incubation. It was observed that the immobilized bacterium secreted two different amylases (Am-I and Am-II) into the culture fluid. The molecular masses of Am-I and Am-II were 59.6 and 44.7 kd, respectively, and showed optimum activity at pH 5.0 and 9.0. Both amylases showed optimum activity at 40°C and were stable at the same temperature, with losses of only 10 and 20% (for Am I and Am II, respectively) of their original activities after 24 h of incubation. Further, both amylases were salt tolerant (up to 4 M NaCl) and hydrolyzed raw starchy foods into glucose. All these characteristics make this enzyme mixture suitable for use as a digestive aid and for the improvement of digestibility of animal feed ingredients.  相似文献   

11.
Using molecular karyotyping and genetic hybridization analysis, two new polymeric β-fructosidase genes, SUC9 and SUC10, were identified in the yeast Saccharomyces cerevisiae, which are located on chromosome XIV and on the chromosome XVI/XIII doublet, respectively. The genes are responsible for fermentation of sucrose and raffinose. The SUC gene genotypes of strains VKM Y-1831 and DBVPG 1340 are SUC2 SUC9 and suc2 0 SUC10, respectively. suc2 0 is a silent sequence. The scientific and applied significance of SUC genes is discussed.  相似文献   

12.
The β-glycosidase gene of Thermus thermophilus KNOUC202 was cloned, expressed in Escherichia coli JM109(DE3), and the enzyme was purified and characterized. The gene (KNOUC202β-gly) was composed of 1296 bp encoding a β-glycosidase (KNOUC202β-glycosidase) of 431 a.a., belonging to the family 1 of glycosyl hydrolase. The gene was expressed as monomer of 430 a.a. with amino terminal methionine excised in E. col JM109(DE3). The enzyme hydrolyzed β-glycosides whose glycone are galactose, glucose and fucose well, however showed no or very low activity on β-D-glycosides whose glycone are disaccharides and xylose. k cat of the enzyme for the hydrolysis of p-Nph-β-D-Glcp was lower than those for p-Nph-β-D-Galp and ONPG, however K m for p-Nph-β-D-Glcp was highly lower than those for p-Nph-β-D-Galp and ONPG resulting in the catalytic efficiency(k cat/K m) for the hydrolysis of p-Nph-β-D-Glcp much higher than those for p-Nph-β-D-Galp and ONPG. Optimum pH and optimum temperature of the enzyme were pH 5.4 and 90°C. The enzyme has high thermostability, not losing its activity at 80°C for 2 h in 0.05 M Na-phosphate buffer of pH 6.8 with T m of 100.0 ± 0.031°C in 0.02 M Tris-HCl buffer of pH 8.2. The b-glycosidase produced a disaccharide composed of galactose as transglycosylation by-product during hydrolysis of lactose.  相似文献   

13.
Purification of extracellular α-amylase from Bacillus subtilis KIBGE HAS was carried out by ultrafiltration, ammonium sulfate precipitation and gel filtration chromatography. The enzyme was purified to homogeneity with 96.3-fold purification with specific activity of 13011 U/mg. The molecular weight of purified α-amylase was found to be 56,000 Da by SDS-PAGE. Characteristics of extracellular α-amylase showed that the enzyme had a Km and V max value of 2.68 mg/ml and 1773 U/ml, respectively. The optimum activity was observed at pH 7.5 in 0.1 M phosphate buffer at 50°C. The amino acid composition of the enzyme showed that the enzyme is rich in neutral/non polar amino acids and less in acidic/polar and basic amino acids. The N-terminal protein sequence of 10 residues was found to be as Ser-Ser-Asn-Lys-Leu-Thr-Thr-Ser-Trp-Gly (S-S-N-K-L-T-T-S-W-G). Furthermore, the protein was not N-terminally blocked. The sequence of α-amylase from B. subtilis KIBGE HAS was a novel sequence and showed no homology to other reported α-amylases from Bacillus strain.  相似文献   

14.
Thermostable alkaline α-amylase producing bacterium Bacillus cereus strain isolated from Cuddalore harbour waters grew maximally in both shake flask and fermentor, and produced α-amylase at 35°C, pH 7.5 and 1.0% of substrate concentrations. α-Amylase activity was maximum at 65°C, pH 8.0, 89% of its activity was sustained even at pH 11.0. Added with MnCl2, α-amylase activity showed 4% increase but it was inhibited by EDTA. The molecular weight of the purified α-amylase is 42 kDa.  相似文献   

15.
Entamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.  相似文献   

16.
17.
A new species, Chamaecrista truncata, from southeastern Brazil, is described, illustrated and compared to its putative closest relative, C. parvistipula. The new species belongs to Chamaecrista sect. Chamaecrista ser. Flexuosae which is characterized by asymmetrical leaflets with palmate venation, quadrangular stems and axillary peduncles. Additionally, the venation pattern of the leaflets and the different types of stipules observed within this series are shown.  相似文献   

18.
19.
20.
An expression plasmid containing the agdA gene encoding Aspergillus oryzae ZL-1 α-glucosidase was constructed and expressed in Pichia pastoris X-33. The molar mass of the purified protein was estimated by SDS-PAGE. HPLC analysis showed that the purified enzyme has a transglucosylating activity with maltose as substrate. The main component of the enzyme products was panose, while amounts of isomaltose and isomaltotriose were very low or absent. pH 5.2 and temperature of 37 °C were optimum for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号