首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hirata A  Adachi M  Utsumi S  Mikami B 《Biochemistry》2004,43(39):12523-12531
The optimum pH of Bacillus cereus beta-amylase (BCB, pH 6.7) differs from that of soybean beta-amylase (SBA, pH 5.4) due to the substitution of a few amino acid residues near the catalytic base residue (Glu 380 in SBA and Glu 367 in BCB). To explore the mechanism for controlling the optimum pH of beta-amylase, five mutants of BCB (Y164E, Y164F, Y164H, Y164Q, and Y164Q/T47M/Y164E/T328N) were constructed and characterized with respect to enzymatic properties and X-ray structural crystal analysis. The optimum pH of the four single mutants shifted to 4.2-4.8, approximately 2 pH units and approximately 1 pH unit lower than those of BCB and SBA, respectively, and their k(cat) values decreased to 41-3% of that of the wild-type enzyme. The X-ray crystal analysis of the enzyme-maltose complexes showed that Glu 367 of the wild type is surrounded by two water molecules (W1 and W2) that are not found in SBA. W1 is hydrogen-bonded to both side chains of Glu 367 and Tyr 164. The mutation of Tyr 164 to Glu and Phe resulted in the disruption of the hydrogen bond between Tyr 164 Oeta and W1 and the introduction of two additional water molecules near position 164. In contrast, the triple mutant of BCB with a slightly decreased pH optimum at pH 6.0 has no water molecules (W1 and W2) around Glu 367. These results suggested that a water-mediated hydrogen bond network (Glu 367...W1...Tyr 164...Thr 328) is the primary requisite for the increased pH optimum of wild-type BCB. This strategy is completely different from that of SBA, in which a hydrogen bond network (Glu 380...Thr 340...Glu 178) reduces the optimum pH in a hydrophobic environment.  相似文献   

2.
The structure of acetamidase/formamidase (Amds/Fmds) from the archaeon Thermoanaerobacter tengcongensis has been determined by X-ray diffraction analysis using MAD data in a crystal of space group P2?, with unit-cell parameters a = 41.23 (3), b = 152.88 (6), c = 100.26 (7) ?, β = 99.49 (3) ° and been refined to a crystallographic R-factor of 17.4% and R-free of 23.7%. It contains two dimers in one asymmetric unit, in which native Amds/Fmds (TE19) contains of the 32 kDa native protein. The final model consists of 4 monomer (299 amino acids residues with additional 2 expression tag amino acids residues), 5 Ca2?, 4 Zn2? and 853 water molecules. The monomer is composed by the following: an N-domain which is featuring by three-layers β/β/β; a prominent excursion between N-terminal end of strand β? and β??, which contains four-stranded antiparallel β sheet; an C-domain which is formed by the last 82 amino acid residues with the feature of mixed α/β structure. The protein contains ion-pair Ca2?-Zn2?. The portion of three-layer β/β/β along with the loops provides four protein ligands to the tightly bound Ca2?, three water molecules complete the coordination; and provides five protein ligands to the tightly bound Zn2?, one water molecule complete the coordination.  相似文献   

3.
We have investigated the organization and dynamics of tryptophan residues in tetrameric, monomeric and unfolded states of soybean agglutinin (SBA) by selective chemical modification, steady-state and time-resolved fluorescence, and phosphorescence. Oxidation with N-bromosuccinimide (NBS) modifies two tryptophans (Trp 60 and Trp 132) in tetramer, four (Trp 8, Trp 203 and previous two) in monomer, and all six (Trp 8, Trp 60, Trp 132, Trp 154, Trp 203 and Trp 226) in unfolded state. Utilizing wavelength-selective fluorescence approach, we have observed a red-edge excitation shift (REES) of 10 and 5 nm for tetramer and monomer, respectively. A more pronounced REES (21 nm) is observed after NBS oxidation. These results are supported by fluorescence anisotropy experiments. Acrylamide quenching shows the Stern–Volmer constant (KSV) for tetramer, monomer and unfolded SBA being 2.2, 5.0 and 14.6 M−1, respectively. Time-resolved fluorescence studies exhibit biexponential decay with the mean lifetime increasing along tetramer (1.0 ns) to monomer (1.9 ns) to unfolded (3.6 ns). Phosphorescence studies at 77 K give more structured spectra, with two (0,0) bands at 408.6 (weak) and 413.2 nm for tetramer. However, a single (0,0) band appears at 411.8 and 407.2 nm for monomer and unfolded SBA, respectively. The exposure of hydrophobic surface in SBA monomer has been examined by 8-anilino-1-naphthalenesulfonate (ANS) binding, which shows ∼20-fold increase in ANS fluorescence compared to that for tetramer. The mean lifetime of ANS also shows a large increase (12.0 ns) upon binding to monomer. These results may provide important insight into the role of tryptophans in the folding and association of SBA, and oligomeric proteins in general.  相似文献   

4.
2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5–60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.  相似文献   

5.
The gene encoding the beta-amylase of Bacillus cereus BQ10-S1 (SpoII) was cloned into Escherichia coli JM 109. A sequenced DNA fragment of 2,001 bp contains the beta-amylase gene. The N-terminal sequences (AVNGKG MNPDYKAYLMAPLKKI), the C-terminal sequences (SHTSSW), and the amino acid sequences of the five regions in the beta-amylase molecules were determined. The mature beta-amylase contains 514 amino acid residues with a molecular mass of 57,885 Da. The amino acid sequence homology with those of known beta-amylases was 52.7% for Bacillus polymyxa, 52.0% for Bacillus circulans, 43.4% for Clostridium thermosulfurogenes, 31.8% for Arabidopsis thaliana, 31.5% for barley, 29.9% for sweet potato, and 28.9% for soybean. Ten well-conserved regions were found between the N terminus and the area around residue 430, but the C-terminal region of 90 residues has no similarity with those of the plant beta-amylases. The homology search revealed that this C-terminal region has homology with C-terminal regions of the beta-amylase from C. thermosulfurogenes, some bacterial alpha-amylases, cyclodextrin glucanotransferase, and glucoamylase. Some of these sequences are known as the raw-starch-binding domain. These results suggest that B. cereus beta-amylase has an extra domain which has raw-starch-binding ability and that the domain has considerable sequence homology with those of other amylases or related enzymes from a wide variety of microorganisms.  相似文献   

6.
Chicken avidin, a homotetramer that binds four molecules of biotin was converted to a monomeric form by successive mutations of interface residues to alanine. The major contribution to monomer formation was the mutation of two aspartic acid residues, which together account for ten hydrogen bonding interactions at the 1-4 interface. Mutation of these residues, together with the three hydrophobic residues at the 1-3 interface, led to stable monomer formation in the absence of biotin. Upon addition of biotin, the monomeric avidin reassociated to the tetramer, which exhibited properties similar to those of native avidin, with respect to biotin binding, thermostability, and protease resistance. To our knowledge, these unexpected results represent the first example of a small monovalent ligand that induces oligomerization of a monomeric protein. This study may suggest a biological role for low molecular weight ligands in inducing oligomerization and in maintaining the stability of multimeric protein assemblies.  相似文献   

7.
S A Moore  M N James  D J O'Kane    J Lee 《The EMBO journal》1993,12(5):1767-1774
The molecular structure of the luxF protein from the bioluminescent bacterium Photobacterium leiognathi has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 17.8% at 2.3 A resolution. The 228 amino acid polypeptide exists as a symmetrical homodimer and 33% of the monomer's solvent-accessible surface area is buried upon dimerization. The monomer displays a novel fold that contains a central seven-stranded beta-barrel. The solvent-exposed surface of the monomer is covered by seven alpha-helices, whereas the dimer interface is primarily a flat surface composed of beta-strands. The protein monomer binds two molecules of flavin mononucleotide, each of which has C6 of the flavin isoalloxazine moiety covalently attached to the C3' carbon atom of myristic acid. Both myristyl groups of these adducts are buried within the hydrophobic core of the protein. One of the cofactors contributes to interactions at the dimer interface. The luxF protein displays considerable amino acid sequence homology with both alpha- and beta-subunits of bacterial luciferase, especially the beta-subunit. Conserved amino acid residues shared between luxF and the luciferase subunits cluster predominantly in two distinct regions of the luxF protein molecule. These homologous regions in the luciferase subunits probably share a three-dimensional fold similar to that of the luxF protein.  相似文献   

8.
Liu J  Deng Y  Zheng Q  Cheng CS  Kallenbach NR  Lu M 《Biochemistry》2006,45(51):15224-15231
Specific helix-helix interactions are fundamental in assembling the native state of proteins and in protein-protein interfaces. Coiled coils afford a unique model system for elucidating principles of molecular recognition between alpha helices. The coiled-coil fold is specified by a characteristic seven amino acid repeat containing hydrophobic residues at the first (a) and fourth (d) positions. Nonpolar side chains spaced three and four residues apart are referred to as the 3-4 hydrophobic repeat. The presence of apolar amino acids at the e or g positions (corresponding to a 3-3-1 hydrophobic repeat) can provide new possibilities for close-packing of alpha-helices that includes examples such as the lac repressor tetramerization domain. Here we demonstrate that an unprecedented coiled-coil interface results from replacement of three charged residues at the e positions in the dimeric GCN4 leucine zipper by nonpolar valine side chains. Equilibrium circular dichroism and analytical ultracentrifugation studies indicate that the valine-containing mutant forms a discrete alpha-helical tetramer with a significantly higher stability than the parent leucine-zipper molecule. The 1.35 A resolution crystal structure of the tetramer reveals a parallel four-stranded coiled coil with a three-residue interhelical offset. The local packing geometry of the three hydrophobic positions in the tetramer conformation is completely different from that seen in classical tetrameric structures yet bears resemblance to that in three-stranded coiled coils. These studies demonstrate that distinct van der Waals interactions beyond the a and d side chains can generate a diverse set of helix-helix interfaces and three-dimensional supercoil structures.  相似文献   

9.
Diocleinae legume lectins are a group of oligomeric proteins whose subunits display a high degree of primary structure and tertiary fold conservation but exhibit considerable diversity in their oligomerisation modes. To elucidate the structural determinants underlaying Diocleinae lectin oligomerisation, we have determined the crystal structures of native and cadmium-substituted Dioclea guianensis (Dguia) seed lectin. These structures have been solved by molecular replacement using concanavalin (ConA) coordinates as the starting model, and refined against data to 2.0 A resolution. In the native (Mn/Ca-Dguia) crystal form (P4(3)2(1)2), the asymmetric unit contains two monomers arranged into a canonical legume lectin dimer, and the tetramer is formed with a symmetry-related dimer. In the Cd/Cd-substituted form (I4(1)22), the asymmetric unit is occupied by a monomer. In both crystal forms, the tetrameric association is achieved by the corresponding symmetry operators. Like other legume lectins, native D. guianensis lectin contains manganese and calcium ions bound in the vicinity of the saccharide-combining site. The architecture of these metal-binding sites (S1 and S2) changed only slightly in the cadmium/cadmium-substituted form. A highly ordered calcium (native lectin) or cadmium (Cd/Cd-substituted lectin) ion is coordinated at the interface between dimers that are not tetrameric partners in a similar manner as the previously identified Cd(2+) in site S3 of a Cd/Ca-ConA. An additional Mn(2+) coordination site (called S5), whose presence has not been reported in crystal structures of any other homologous lectin, is present in both, the Mn/Ca and the Cd/Cd-substituted D. guianensis lectin forms. On the other hand, comparison of the primary and quaternary crystal structures of seed lectins from D. guianensis and Dioclea grandiflora (1DGL) indicates that the loop comprising residues 117-123 is ordered to make interdimer contacts in the D. grandiflora lectin structure, while this loop is disordered in the D. guianensis lectin structure. A single amino acid difference at position 131 (histidine in D. grandiflora and asparagine in D. guianensis) drastically reduces interdimer contacts, accounting for the disordered loop. Further, this amino acid change yields a conformation that may explain why a pH-dependent dimer-tetramer equilibrium exists for the D. guianensis lectin but not for the D. grandiflora lectin.  相似文献   

10.
The primary structure of barley endosperm beta-amylase, an enzyme which catalyses the liberation of maltose from 1,4-alpha-D-glucans, has been deduced from the nucleotide sequence of a cloned full-length cDNA. The mRNA is 1754 nucleotides long [excluding the poly(A) tail] and codes for a polypeptide of 535 amino acids with a relative molecular mass of 59,663. The deduced amino acid sequence was compared with the sequences of ten peptides obtained from the purified enzyme and unambiguous identification was obtained. The N-terminal region of the deduced sequence was identical to a 12-residue cyanogen-bromide-peptide sequence, indicating that beta-amylase is synthesized as the mature protein. A graphic matrix homology plot shows four glycine-rich repeats, each of 11 residues, preceding the C-terminus. Southern blotting of genomic DNA demonstrates that beta-amylase is encoded by a small gene family, while cDNA sequence analysis indicates the presence of at least two types of mRNA in the endosperm. Dot and northern blot analysis show that Hiproly barley contains greatly increased levels of beta-amylase mRNA compared to the normal cultivar Sundance, whereas Ris? mutant 1508 contains only trace amounts. These results correlate well with the deposition of beta-amylase during endosperm development in these lines. Low but similar amounts of beta-amylase mRNAs sequences were detected in leaves and shoots from normal and mutant barleys, demonstrating that the mutant lys3a (1508) and lysl (Hiproly) genes do not affect the expression of beta-amylase in these tissues.  相似文献   

11.
Structural determinants underlaying the pH-dependent dimer-tetramer transition of Diocleinae lectins were investigated from the structures of Cratylia floribunda seed lectin crystallized in conditions where it exist as a dimer (pH 4.6) or as a tetramer (pH 8.5). The acidic (aCFL) and the basic (bCFL) tetramers superimpose with overall r.m.s.d. of 0.53 A, though interdimer contacts are drastically reduced in aCFL, and the r.m.s.d. for the superposition of the 117-120 loops of aCFL vs. the bCFL tetramer is 1.29 A. Our data support the view that His51 plays a role in determining the conformation of the central cavity loops and that interdimer contacts involving ordered loop residues stabilize the canonical, pH-dependent tetramer. In the bCFL tetramer, hydrogen bonds between Asn118 and Thr120 of monomers A and D and residues Ser66, Ser108, Ser110, and Thr49 of the opposite monomer stabilize the canonical, pH-dependent tetrameric lectin structure. In CFL, Asn131 makes intradimer contacts with Asn122 and Ala123. In comparison, His131 in Dioclea grandiflora lectin establishes a network of interdimer interactions bridging the four central loops of the pH-independent tetramer. Our data provide new insights into the participation of specific amino acid residues in the mechanism of the quaternary association of Diocleinae lectins.  相似文献   

12.
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.  相似文献   

13.
14.
The mature bovine cathepsin C (CC) molecule is composed of four identical monomers, each proteolytically processed into three chains. Five intrachain disulfides and three nonpaired cysteine residues per monomer were identified. Beside catalytic Cys234 in the active site, free-thiol Cys331 and Cys424 were characterized. Cys424 can be classified as inaccessible buried residue. Selective modification of Cys331 results in dissociation of native CC tetramer into dimers. The 3D homology-based model of the CC catalytic core suggests that Cys331 becomes exposed as the activation peptide is removed during procathepsin C activation. The model further shows that exposed Cys331 is surrounded by a surface hydrophobic cluster, unique to CC, forming a dimer-dimer interaction interface. Substrate/inhibitor recognition of the active site in the CC dimer differs significantly from that in the native tetramer. Taken together, a mechanism is proposed that assumes that the CC tetramer formation results in a site-specific occlusion of endopeptidase-like active site cleft of each CC monomeric unit. Thus, tetramerization provides for the structural basis of the dipeptidyl peptidase activity of CC through a substrate access-limiting mechanism different from those found in homologous monomeric exopeptidases cathepsin H and B. In conclusion, the mechanism of tetramer formation as well as specific posttranslational processing segregates CC in the family of papain proteases.  相似文献   

15.
The mariner Mos1 synaptic complex consists of a tetramer of transposase molecules that bring together the two ends of the element. Such an assembly requires at least two kinds of protein-protein interfaces. The first is involved in "cis" dimerization, and consists of transposase molecules bound side-by-side on a single DNA molecule. The second, which is involved in "trans" dimerization, consists of transposase molecules bound to two different DNA molecules. Here, we used biochemical and genetic methods to enhance the definition of the regions involved in cis and trans-dimerization in the mariner Mos1 transposase. The cis and trans-dimerization interfaces were both found within the first 143 amino acid residues of the protein. The cis-dimerization activity was mainly contained in amino acids 1-20. The region spanning from amino acid residues 116-143, and containing the WVPHEL motif, was involved in the cis- to trans-shift as well as in trans-dimerization stabilization. Although the transposase exists mainly as a monomer in solution, we provide evidence that the transposase cis-dimer is the active species in inverted terminal repeat (ITR) binding. We also observed that the catalytic domain of the mariner Mos1 transposase modulates efficient transposase-transposase interactions in the absence of the transposon ends.  相似文献   

16.

Background

Transthyretin (TTR) is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4) and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis.

Methodology and Principal Findings

We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site) than the second T4 site (BD site). Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy.

Conclusion

Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation.  相似文献   

17.
Factor B is a key component of the alternative pathway of the complement system. During complement activation, factor B complexed with activated C3 is cleaved into the Ba and Bb fragments by the protease factor D to form the C3 convertase from the complex between C3b and Bb. The Ba fragment contains three short consensus/complement repeat (SCR) domains, and the Bb fragment contains a von Willebrand factor type A (vWF-A) domain and a serine protease (SP) domain. Surface-enhanced laser desorption-ionization affinity mass spectrometry (SELDIAMS) was used to investigate the reaction of factor B with immobilised activated C3(NH3) in the presence of Mg(2+). A recombinant vWF-A domain (residues G229-Q448), the native Ba and Bb fragments and native factor B all demonstrated specific interactions with C3(NH3), while no interactions were detected using bovine serum albumin as a control. A mass analysis of the proteolysis of the vWF-A domain when this was bound to immobilised C3(NH3) identified two peptides (residues G229-K265 and T355-R381) that were involved with vWF-A binding to C3(NH3). A homology model for the vWF-A domain was constructed using the vWF-A crystal structure in complement receptor type 3. Comparisons with five different vWF-A crystal structures showed that large surface insertions were present close to the carboxyl and amino edges of the central beta-sheet of the factor B vWF-A structure. The peptides G229-K265 and T355-R381 corresponded to the two sides of the active site cleft at the carboxyl edge of the vWF-A structure. The vWF-A connections with the SCR and SP domains were close to the amino edge of this vWF-A beta-sheet, and shows that the vWF-A domain can be involved in both C3b binding and the regulation of factor B activity. These results show that (i) a major function of the vWF-A domain is to bind to activated C3 during the formation of the C3 convertase, which it does at its active site cleft; and that (ii) SELDIAMS provides an efficient means of identifying residues involved in protein-protein interactions.  相似文献   

18.
The crystal structure of ribonuclease A with bound thymidylic acid tetramer is reported at 2.5-A resolution. The diffusion of the tetramer into native orthorhombic crystals of the ribonuclease allows for the formation of a structurally stable complex where the single-stranded nucleic acid enters and leaves the enzyme's catalytic region in a persistent 5'-3' direction. The binding of the tetramer to the enzyme's surface is facilitated and mediated by electrostatic interactions between basic protein residues and nucleotide phosphates. Two pyrimidine nucleotides are bound to the enzyme's active site in a manner similar to that observed for other complexes between ribonuclease A and nucleic acid oligomers.  相似文献   

19.
The crystals of beta-amylase from Bacillus cereus belong to space group P21 with the following cell dimensions: a = 57.70 A, b = 92.87 A, c = 65.93 A, and beta =101.95 degrees. The structures of free and maltose-bound beta-amylases were determined by X-ray crystallography at 2.1 and 2.5 A with R-factors of 0.170 and 0.164, respectively. The final model of the maltose-bound form comprises 516 amino acid residues, four maltose molecules, 275 water molecules, one Ca2+, one acetate, and one sulfate ion. The enzyme consists of a core (beta/alpha)8-barrel domain (residues 5-434) and a C-terminal starch-binding domain (residues 435-613). Besides the active site in the core where two maltose molecules are bound in tandem, two novel maltose-binding sites were found in the core L4 region and in the C-terminal domain. The structure of the core domain is similar to that of soybean beta-amylase except for the L4 maltose-binding site, whereas the C-terminal domain has the same secondary structure as domain E of cyclodextrin glucosyltransferase. These two maltose-binding sites are 32-36 A apart from the active site. These results indicate that the ability of B. cereus beta-amylase to digest raw starch can be attributed to the additional two maltose-binding sites.  相似文献   

20.
The structure of the Ascaris suum mitochondrial NAD-malic enzyme in binary complex with NAD has been solved to a resolution of 2.3 A by X-ray crystallography. The structure resembles that of the human mitochondrial enzyme determined in complex with NAD [Xu, Y., Bhargava, G., Wu, H., Loeber, G., and Tong, L. (1999) Structure 7, 877-889]. The enzyme is a tetramer comprised of subunits possessing four domains organized in an "open" structure typical of the NAD-bound form. The subunit organization, as in the human enzyme, is a dimer of dimers. The Ascaris enzyme contains 30 additional residues at its amino terminus relative to the human enzyme. These residues significantly increase the interactions that promote tetramer formation and give rise to different subunit-subunit interactions. Unlike the mammalian enzyme, the Ascaris malic enzyme is not regulated by ATP, and no ATP binding site is observed in this structure. Although the active sites of the two enzymes are similar, residues interacting with NAD differ between the two. The structure is discussed in terms of the mechanism and particularly with respect to previously obtained kinetic and site-directed mutagenesis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号