首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
哺乳动物精子从发生到具备受精能力到达受精部位是一个漫长的过程。在此过程的不同环境中存在可调控精子成熟和功能的胞外囊泡,这些胞外囊泡包括来自雄性生殖道内的附睾小体和前列腺小体,以及来自雌性生殖道内的阴道小体、输卵管小体及子宫小体。现介绍胞外囊泡的概况、生殖道内的胞外囊泡特征、精子摄取胞外囊泡的可能机制以及生殖道胞外囊胞研究的未来展望,以期更好地理解在受精过程中精子功能如何受胞外囊泡调控,为男性不育诊治提供线索。  相似文献   

2.
胞外囊泡(extracellular vesicles,EVs)是一类由细胞分泌到胞外的能够被受体细胞摄取的膜性囊泡小体,直径在20~ 1 000 nm.近年来,越来越多的研究者发现胞外囊泡在疾病诊断、预后评估以及药物递送等方面具有重要的生物学作用.胞外囊泡可以直接参与细胞间信息的传递以及物质的运输,其携带的核酸(mRNA,microRNA和lncRNA)和蛋白质可以影响受体细胞的生理状态.大量研究表明,胞外囊泡是被糖基化修饰的,胞外囊泡表面覆盖了大量的聚糖以及糖结合蛋白,而已知聚糖类物质在调控细胞黏附、细胞-细胞之间的信息传递、细胞和细胞外基质相互作用、免疫调节和肿瘤转移等方面发挥重要的作用.本文综述了近年来细胞外囊泡表面糖缀合物修饰的前沿研究,以期更好地理解聚糖在胞外囊泡的合成、释放以及运输过程及其生物学功能中的作用.  相似文献   

3.
胞外囊泡(extracellular vesicles,EVs)是一类由细胞分泌到胞外的能够被受体细胞摄取的膜性囊泡小体,直径在20~1 000 nm.近年来,越来越多的研究者发现胞外囊泡在疾病诊断、预后评估以及药物递送等方面具有重要的生物学作用.胞外囊泡可以直接参与细胞间信息的传递以及物质的运输,其携带的核酸(m RNA,micro RNA和lnc RNA)和蛋白质可以影响受体细胞的生理状态.大量研究表明,胞外囊泡是被糖基化修饰的,胞外囊泡表面覆盖了大量的聚糖以及糖结合蛋白,而已知聚糖类物质在调控细胞黏附、细胞-细胞之间的信息传递、细胞和细胞外基质相互作用、免疫调节和肿瘤转移等方面发挥重要的作用.本文综述了近年来细胞外囊泡表面糖缀合物修饰的前沿研究,以期更好地理解聚糖在胞外囊泡的合成、释放以及运输过程及其生物学功能中的作用.  相似文献   

4.
突触传递是脑功能最重要的一个环节。概略地讲,电冲动扩布至神经末梢,导致突触囊泡移向突触前膜,当囊泡膜与胞质膜融合时形成孔道,储存于囊泡中的神经递质通过该孔道呈量子式释放,随后囊泡膜塌陷入(collapse into)胞质膜并与之结合,此后,囊泡膜能被回收并重新利用,这一过程已得到人们的普遍认可。但是来自塌陷囊泡的膜成分的回收机制是复杂的,  相似文献   

5.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

6.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

7.
单个囊泡内容物检测技术的成功生物信息分子在细胞内合成后分类包装并贮存于囊泡中,当生理信号触发囊泡膜与细胞膜融合后,这些生物信息分子释放于胞外产生生物效应。通常单个囊泡内容物足以能产生明显的生物效应,但由于囊泡极其微小,数年来研究者们只能在囊泡群体水平...  相似文献   

8.
目的:人脐带间充质干细胞(HUC-MSCs)来源的纳米颗粒可通过多种载药方式用于药物靶向,是近年来医药领域的研究热点。本文应用过表达CD64(FcγRI)的脐带间充质干细胞(HUC-MSCs)细胞质体(Cytoplast)为原料,制备可装载Ig G1/IgG3靶向抗体的纳米囊泡,并检测纳米囊泡的入胞效率。方法:应用组织块培养法分离HUC-MSCs;建立pLV-CD64慢病毒包装载体并包装慢病毒,用慢病毒感染HUC-MSCs并筛选稳定表达CD64的细胞株;通过细胞松胞菌素B共孵育/离心法去除HUC-MSCs细胞核获得质体;超声法和梯度挤出法制备直径约200 nm的囊泡;将纳米囊泡与抗EGFR的Ig G1抗体共孵育以装载靶向抗体,并观察该纳米囊泡进入A549细胞的入胞效率变化。结果:成功获得稳定表达CD64的HUC-MSCs质体,制备装载EGFR抗体的纳米囊泡(粒径为195±82 nm)并有效提高了该囊泡对靶细胞的入胞效率。结论:成功构建可装载Ig G1抗体的纳米微泡,该纳米囊泡可高效进入表达EGFR的A549靶细胞。  相似文献   

9.
受体介导式入胞是一种与细胞膜受体有关的入胞过程。这一过程可概括为:1)膜受体识别介质中的特异性配体并与之结合,形成受体一配体复合物;2)该复合物在细胞膜中横向移动.逐渐向膜表面的衣被凹陷处集中,衣被凹陷是细胞膜上一个特殊的区域,其胞质侧富含网格蛋白;3)衣被凹陷进一步向胞质侧凹入,并最终与细胞膜脱离,在胞内形成一个囊泡,称衣被囊泡。衣被囊泡的形成过程称内移(internalization):4)衣被囊泡与胞浆中的内体融合,内体可以发出和接受囊泡,与细胞膜、高尔基体和溶酶体有着广泛的交通往来.并通过内体的周转实现膜受体的循环利用和胞内物质的转运(如图1);5)内体与溶酶体融合,内容物被降解,受体与配体分离,配体进入胞内.膜受体回到胞膜。对于这样一个复杂的过程,人们的认识水平正不断深入,仅就受体介导式入胞各个环节的分子机理作一综述。  相似文献   

10.
间充质干细胞(MSCs)是一类多组织来源的成体干细胞,具有自我更新及多项分化潜能。移植后,MSCs可以迁移归巢至受损组织,通过分泌免疫调节因子,细胞因子,生长因子,胞外囊泡和其他生物活性物质,发挥抗炎,抗病毒,抗凋亡,抗纤维化,促进血管新生和免疫调节等作用,在治疗自身免疫性疾病及组织器官修复中表现出较好的疗效。目前,国际上已有10余款MSCs产品上市,我国也有30余款间充质干细胞新药获得临床试验默许。胞外囊泡是来源于膜系统,由细胞分泌的双层脂质颗粒,携带有亲本细胞的生物活性物质,包含蛋白质,脂质,mRNA和细胞因子等,可以将亲本细胞信号传递给受体细胞。间充质干细胞来源的胞外囊泡具有与其来源的间充质干细胞相似的生物学特性。因其体积小,免疫原性低,组织渗透性强,循环半衰期长,稳定性高,使用风险低等优点,近年来,胞外囊泡作为非细胞产品逐渐受到关注。除其本身具有组织发育与功能维持,调节免疫,抗氧化应激和促进再生等作用之外,间充质干细胞及其胞外囊泡还可以作为生物载体递送生物活性物质,发挥抗肿瘤和促进组织修复等作用。本文就间充质干细胞及其胞外囊泡的功能及其作为药物载体的研究进展进行综述。  相似文献   

11.
Presynaptic nerve terminals contain a great number ofsynaptic vesicles filled with neurotransmitter. The transmission of information in synapses is mediated by release of transmitter from vesicles: exocytosis, after their fusion with presynaptic membrane. At the functioning synapses, the continuous recycling of synaptic vesicles occurs (vesicle cycle), which provides multiple reuse of vesicular membrane material during synaptic activity. Vesicle cycle consists of large number of steps, including vesicle fusion--exocytosis, formation of new vesicles--endocytosis, vesicle sorting, filling of vesicles with transmitter, intraterminal vesicle transport driving the vesicles to different vesicle pools and preparing to next exocytic event. At this paper, I presented the latest literature and our data regarding the steps and mechanisms of vesicle cycle at synapses. Special attention was paid to neuromuscular synapse as the most thoroughly investigated and as my favorite preparation.  相似文献   

12.
The synaptic vesicle protein, synaptotagmin I, is a multifunctional protein required for several steps in the synaptic vesicle cycle. It is primarily composed of two calcium‐binding domains, C2A and C2B. Within each of these domains, a polylysine motif has been identified that is proposed to mediate specific functions within the synaptic vesicle cycle. While the C2B polylysine motif plays an important role in synaptic transmission in vivo, the C2A polylysine motif has not previously been analyzed at an intact synapse. Here, we show that mutation of the C2A polylysine motif increases the frequency of spontaneous transmitter release in vivo. The increased frequency is not a developmental consequence of disrupted synaptic transmission, as evoked transmitter release is unimpaired in the mutants. Our results demonstrate that synaptotagmin I plays a direct role in regulating spontaneous transmitter release, indicative of an active role in synaptic vesicle stabilization mediated by the C2A polylysine motif. genesis 47:337–345, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Mitochondria are the primary source of ATP needed for the steps of the synaptic vesicle cycle. Dynamin-related protein (DRP) is involved in the fission of mitochondria and peroxisomes. To assess the role of mitochondria in synaptic function, we characterized a Drosophila DRP mutant combination that shows an acute temperature-sensitive paralysis. Sequencing of the mutant reveals a single amino acid change in the guanosine triphosphate hydrolysing domain (GTPase domain) of DRP. The synaptic mitochondria in these mutants are remarkably elongated, suggesting a role for DRP in mitochondrial fission in Drosophila. There is a loss of neuronal transmission at restrictive temperatures in electroretinogram (ERG) recordings. Like stress-sensitive B (sesB), a mitochondrial adenosine triphosphate (ATP) translocase mutant we studied earlier for its effects on synaptic vesicle recycling, an allele-specific reduction in the temperature of paralysis of Drosophila synaptic vesicle recycling mutant shibire was seen in the DRP mutant background. These data, in addition to depletion of vesicles observed in electron microscopic sections of photoreceptor synapses at restrictive temperatures, suggest a block in synaptic vesicle recycling due to reduced mitochondrial function.  相似文献   

14.
Activity regulated neurotransmission shapes the computational properties of a neuron and involves the concerted action of many proteins. Classical, intuitive working models often assign specific proteins to specific steps in such complex cellular processes, whereas modern systems theories emphasize more integrated functions of proteins. To test how often synaptic proteins participate in multiple steps in neurotransmission we present a novel probabilistic method to analyze complex functional data from genetic perturbation studies on neuronal secretion. Our method uses a mixture of probabilistic principal component analyzers to cluster genetic perturbations on two distinct steps in synaptic secretion, vesicle priming and fusion, and accounts for the poor standardization between different studies. Clustering data from 121 perturbations revealed that different perturbations of a given protein are often assigned to different steps in the release process. Furthermore, vesicle priming and fusion are inversely correlated for most of those perturbations where a specific protein domain was mutated to create a gain-of-function variant. Finally, two different modes of vesicle release, spontaneous and action potential evoked release, were affected similarly by most perturbations. This data suggests that the presynaptic protein network has evolved as a highly integrated supramolecular machine, which is responsible for both spontaneous and activity induced release, with a group of core proteins using different domains to act on multiple steps in the release process.  相似文献   

15.
The distribution of the sperm protein SP-10 was investigated in plastic-embedded samples of human testes by light and electron microscopy. An immunogold and silver enhancement technique, in conjunction with a monoclonal antibody (MHS-10) raised against SP-10, was used to localize the protein. SP-10 was detected in spermatids at each of the six stages of the cycle of the seminiferous epithelium. Light microscopy showed immunoreactive material at the circumference of developing acrosomes in the early steps of spermiogenesis. As differentiation proceeded and cell shape changed from round to elongated, immunoreactive material appeared in an arc, which gradually became a V shape bordering the spermatid nucleus. The area of the immunoreactive material and its shape corresponded to that of the developing acrosome. At the electron microscopic level, gold particles indicative of the presence of SP-10 were detected on electron-dense material found within the developing acrosomal vesicle in early steps of spermiogenesis. As the electron density of the acrosome increased, a high concentration of gold particles was seen in the vesicle matrix. The gold particles gradually became associated with the inner and outer acrosomal membranes of the most mature spermatids.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1365-1371
The cycle of nucleotide exchange and hydrolysis by a small GTP-binding protein, ADP-ribosylation factor (ARF), helps to provide vectoriality to vesicle transport. Coat assembly is triggered when ARF binds GTP, initiating transport vesicle budding, and coat disassembly is triggered when ARF hydrolyzes GTP, allowing the uncoated vesicle to fuse.  相似文献   

17.
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.  相似文献   

18.
The GLUT4 facilitative glucose transporter protein is primarily expressed in muscle and adipose tissue and accounts for the majority of post-prandial glucose uptake. In the basal or non-stimulated state, GLUT4 is localized to intracellular membrane compartments sequestered away from circulating glucose. However, in response to agonist stimulation, there is a marked redistribution of the GLUT4 protein to the cell surface membrane providing a transport route for the uptake of glucose. This GLUT4 translocation can be divided into four general steps: (i) GLUT4 vesicle trafficking out of the storage pool, (ii) docking just below the cell surface, (iii) priming via the interactions of the SNARE proteins present on the vesicular and plasma membranes, and (iv) fusion of the GLUT4 vesicle with the plasma membrane. This review focuses on recent advances made in identification and characterization of the molecular events and protein interactions involved in these steps of insulin-stimulated GLUT4 translocation.  相似文献   

19.
Biogenesis of synaptic vesicles in vitro   总被引:7,自引:3,他引:4       下载免费PDF全文
《The Journal of cell biology》1995,130(5):1041-1049
Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle membrane proteins from other cellular proteins, and the packaging of those unique proteins into vesicles of the correct size. By labeling an epitope-tagged variant of a synaptic vesicle protein, VAMP (synaptobrevin), at the cell surface of the neuroendocrine cell line PC12, synaptic vesicle biogenesis could be followed with considerable precision, quantitatively and kinetically. Epitope-tagged VAMP was recovered in synaptic vesicles within a few minutes of leaving the cell surface. More efficient targeting was obtained by using the VAMP mutant, del 61-70. Synaptic vesicles did not form at 15 degrees C although endocytosis still occurred. Synaptic vesicles could be generated in vitro from a homogenate of cells labeled at 15 degrees C. The newly formed vesicles are identical to those formed in vivo in their sedimentation characteristics, the presence of the synaptic vesicle protein synaptophysin, and the absence of detectable transferrin receptor. Brain, but not fibroblast cytosol, allows vesicles of the correct size to form. Vesicle formation is time and temperature-dependent, requires ATP, is calcium independent, and is inhibited by GTP-gamma S. Thus, two key steps in synaptic vesicle biogenesis have been reconstituted in vitro, allowing direct analysis of the proteins involved.  相似文献   

20.
Book reviews     
The GLUT4 facilitative glucose transporter protein is primarily expressed in muscle and adipose tissue and accounts for the majority of post-prandial glucose uptake. In the basal or non-stimulated state, GLUT4 is localized to intracellular membrane compartments sequestered away from circulating glucose. However, in response to agonist stimulation, there is a marked redistribution of the GLUT4 protein to the cell surface membrane providing a transport route for the uptake of glucose. This GLUT4 translocation can be divided into four general steps: (i) GLUT4 vesicle trafficking outofthe storage pool, (ii) docking just below the cell surface, (iii) priming via the interactions of the SNARE proteins present on the vesicular and plasma membranes, and (iv) fusion of the GLUT4 vesicle with the plasma membrane. This review focuses on recent advances made in identification and characterization of the molecular events and protein interactions involved in these steps of insulin-stimulated GLUT4 translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号