首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
生物体内神经酰胺有多种生成途径。作为重要的第二信使,神经酰胺在多种信号转导过程中发挥广泛作用,从而影响细胞生长、增殖、分化、凋亡及损伤等多种生理、病理过程。此机制的发现被认为是近年来信号转导研究的重要进展之一。  相似文献   

2.
紫外线是一种重要的环境因素,对人类日常生活起着广泛的影响效应。大量的非保护的日光暴露不仅可以导致皮肤炎症、过度老化甚至皮肤癌症的发生,而且还能够诱导多种细胞凋亡。鞘磷脂酶-神经酰胺信号通路的激活与细胞凋亡关系密切,本文旨在探讨该通路在介导紫外线诱导细胞凋亡中的地位,重点描述了第二信使神经酰胺代谢的研究进展、鞘磷脂酶通路参与紫外线诱导细胞凋亡的机制。深入了解和研究紫外线诱导细胞凋亡的过程及其相关信号转导途径,有助于指导紫外线辐射的防护,开发新的治疗策略。  相似文献   

3.
神经酰胺与细胞凋亡   总被引:1,自引:0,他引:1  
神经酰胺与细胞凋亡叶珉王亚新(上海第二医科大学附属瑞金医院血液学研究所,上海200025)关键词神经酰胺细胞凋亡信号转导细胞凋亡为维持机体内环境稳定所必需,它与有丝分裂相互协调,共同调控胚胎发育、器官的发育和退化、免疫和造血等功能。研究发现,神经酰胺...  相似文献   

4.
神经酰胺:细胞凋亡信号转号的第二信使分子   总被引:2,自引:0,他引:2  
神经酰胺是细胞凋亡信号调控中的一个第二信使因子,许多应激刺激能激活神经鞘磷脂循环产生神经酰胺诱导多种细胞体系发生凋亡。神经酰胺介导细胞凋亡的机理尚未完全明了,可能是通过多个下游靶分子包括CAPK,CAKK,PKC,SAPK/JNK,CPP32,Bcl-2以及Ras-RaclJNK/p38-K→GADD153信号传导链等作用于不同的信号转导途径而诱导细胞凋亡的。  相似文献   

5.
本从神经酰胺的代谢,神经酰胺在神经鞘磷酯途径中充当第二信使,神经鞘磷酯途径连接SAPK/JNK(stress-activated Protein kinase/c-Jun N-terminal protein kinase)凋亡信号转导途径,神经酰胺介导的凋亡信号途径与ICE/Ced-3蛋白激酶的相互作用这四个方面阐述了神经酰胺在介导细胞凋亡中所起的中心作用,以利于了解促进,抑制凋亡的机制及其协同机制,为进一步的研究打好理论基础.  相似文献   

6.
鞘脂与细胞凋亡   总被引:2,自引:0,他引:2  
Wang J  Hu XS  Shi JP 《生理科学进展》2003,34(3):217-221
随着生物技术的不断发展,近年来对鞘脂类物质的研究不断深入。鞘脂质除了在细胞骨架的迁移、血管发生、胚胎发育和信号转导等方面起重要作用外,最近的研究发现鞘脂及其代谢物(神经酰胺、鞘氨醇、鞘氨醇-1-磷酸)能诱导多种肿瘤和恶性增殖细胞(如腺癌、结肠癌、肝肿瘤、肺癌、鼻咽癌等)的凋亡。本文着重对鞘脂与细胞凋亡相关的最新研究进展进行综述。  相似文献   

7.
乳酸菌双组分信号转导系统   总被引:1,自引:0,他引:1  
乳酸菌广泛应用于食品发酵工业中,其中有些菌种是重要的益生菌.乳酸菌中存在着双组分信号转导系统,参与乳酸菌的多种生理生化过程,是其代谢活动的重要调控机制.本文就双组分信号转导系统的组成、作用机制、类型、特点以及乳酸菌中双组分信号转导系统作一综述.  相似文献   

8.
乳酸菌中存在着一种重要的调控机制--双组分信号转导系统,它可以通过调控乳酸菌的多种生理生化过程来适应外界环境的变化.就双组分信号转导系统的组成、作用机制以及乳酸菌中调控耐酸机制、细菌素的合成和黏性吸附等生理过程的双组分信号转导系统作一综述.  相似文献   

9.
神经酰胺是一种神经鞘磷脂类代谢的关键分子,也是一种第二信使分子。它能抑制磷脂酶D的活性,从而抑制细胞周期的进行。神经酰胺参与细胞的分化、凋亡和衰老等多种生理代谢反应。许多细胞因子如:TNF、IL-1、Fas ligands等都能引起神经酰胺水平的升高;神经酰胺作为第二信使执  相似文献   

10.
大量研究表明,TGF-β作为一种具有多种功能的生长因子,是全身瘢痕愈合的重要刺激因素.在人眼部参与多种眼部纤维化的过程。尤其在促进青光眼滤过术后结膜瘢痕形成中起重要作用。Smad蛋白家族在TGF-β超家族的信号转导中具有重要的作用。Smad7主要通过抑制TGF书受体介导的Smad2、Smad3磷酸化来拮抗TGF-β的信号转导,被认为是TGF-β超家族信号转导自我调节的一种负反馈信号。  相似文献   

11.
The carbohydrate composition was determined for ceramide hexosides isolated from brains of patients with Tay-Sachs disease and generalized gangliosidosis (hereby named GM1-gangliosidosis). Gray matter of patients with each disease showed a characteristic abnormal ceramide hexoside pattern. In Tay-Sachs gray matter, ceramide trihexoside is the major component, whereas ceramide tetrahexoside is barely detectable. In GM1-gangliosidosis, ceramide tetrahexoside is the major ceramide hexoside, while ceramide trihexoside is present only in small amount. These two major components have been characterized as the asialo derivatives of, respectively, the "Tay-Sachs ganglioside" (GM2-ganglioside) and the normal major monosialoganglioside (GM1-ganglioside). In both diseases, more than half the ceramide monohexoside of gray matter was glucocerebroside. Gray matter ceramide dihexoside, present in both diseases at higher than normal levels, was mostly ceramide lactoside, with possibly a small amount of ceramide digalactoside. Sulfatide contained only galactose. The abnormal ceramide hexoside pattern is limited to gray matter: white matter showed normal ceramide hexosides, i.e. a preponderance of monohexosides and sulfatide, with no detectable glucocerebroside.  相似文献   

12.
The protein phosphatases1 (PP1) and 2A (PP2A) serve as ceramide-activated protein phosphatases (CAPP). In this study, the structural requirements for interaction between ceramide and CAPP were determined. D-erythro-C(6) ceramide activated the catalytic subunit of PP2A (PP2Ac) approximately 3-fold in a stereospecific manner. In contrast, saturation of the 4-5 double bond, producing D-erythro-dihydro C(6) ceramide, inhibited PP2Ac (IC(50) = 8.5 microM). Furthermore, phyto C(6) ceramide, D-erythro-dehydro C(6) ceramide, and D-erythro-cis-C(6) ceramide had no effect on PP2Ac activity. Modification of the sphingoid chain also abolished the ability of ceramide to activate PP2Ac. Further studies demonstrated the requirement for the amide group, the primary hydroxyl group, and the secondary hydroxyl group of the sphingoid backbone for activation of PP2Ac through the synthesis and evaluation of D-erythro-urea C(6) ceramide, L-erythro-urea C(6) ceramide, D-erythro-N-methyl C(6) ceramide, D-erythro-L-O-methyl C(6) ceramide, D-erythro-3-O-methyl C(6) ceramide, and (2S) 3-keto C(6) ceramide. None of these compounds induced significant activation of PP2Ac. Liposome binding studies were also conducted using analogs of D-erythro-C C(6) ceramide, and the results showed that the ability of ceramide analogs to influence CAPP (activation or inhibition) was associated with the ability of the analogs to bind to CAPP. This study demonstrates strict structural requirements for interaction of ceramide with CAPP, and disclose ceramide as a very specific regulator of CAPP. The studies also begin to define features that transform ceramide analogs into inhibitors of CAPP.  相似文献   

13.
Increased mitochondrial ceramide levels are associated with the initiation of apoptosis. There is evidence that ceramide is causal. Thus, the conversion of the precursor, dihydroceramide, to ceramide by the enzyme dihydroceramide desaturase may be important in preparing the cell for apoptosis. Ceramide can initiate apoptosis by permeabilizing the mitochondrial outer membrane to apoptosis-inducing proteins. However, the mitochondrion's ability to produce ceramide may be limited by its proteome. Here, we show that ceramide synthesized in isolated mammalian endoplasmic reticulum (ER) vesicles from either C8-dihydroceramide or sphingosine to produce long-chain ceramide can transfer to isolated mitochondria. The rate of transfer is consistent with a simple collision model. The transfer of the long-chain ceramide is faster than expected for an uncatalyzed process. Sufficient ceramide is transferred to permeabilize the outer membrane to cytochrome c and adenylate kinase. The mitochondria-associated membranes, ER-like membranes that are tightly associated with isolated mitochondria, can produce enough ceramide to permeabilize the outer membrane transiently. Thus, this ceramide exchange obviates the need for a complete ceramide de novo pathway in mitochondria to increase ceramide levels to the critical value required for functional changes, such as ceramide channel self-assembly followed by protein release.  相似文献   

14.
A cardinal feature of brain tissue injury in stroke is mitochondrial dysfunction leading to cell death, yet remarkably little is known about the mechanisms underlying mitochondrial injury in cerebral ischemia/reperfusion (IR). Ceramide, a naturally occurring membrane sphingolipid, functions as an important second messenger in apoptosis signaling and is generated by de novo synthesis, sphingomyelin hydrolysis, or recycling of sphingolipids. In this study, cerebral IR-induced ceramide elevation resulted from ceramide biosynthesis rather than from hydrolysis of sphingomyelin. Investigation of intracellular sites of ceramide accumulation revealed the elevation of ceramide in mitochondria because of activation of mitochondrial ceramide synthase via post-translational mechanisms. Furthermore, ceramide accumulation appears to cause mitochondrial respiratory chain damage that could be mimicked by exogenously added natural ceramide to mitochondria. The effect of ceramide on mitochondria was somewhat specific; dihydroceramide, a structure closely related to ceramide, did not inflict damage. Stimulation of ceramide biosynthesis seems to be under control of JNK3 signaling: IR-induced ceramide generation and respiratory chain damage was abolished in mitochondria of JNK3-deficient mice, which exhibited reduced infarct volume after IR. These studies suggest that the hallmark of mitochondrial injury in cerebral IR, respiratory chain dysfunction, is caused by the accumulation of ceramide via stimulation of ceramide synthase activity in mitochondria, and that JNK3 has a pivotal role in regulation of ceramide biosynthesis in cerebral IR.  相似文献   

15.
Ceramide is a pivotal molecule in signal transduction and an essential structural component of the epidermal permeability barrier. The epidermis is marked by a high concentration of ceramide and by a unique spectrum of ceramide species: Besides the two ceramide structures commonly found in mammalian tissue, N-acylsphingosine and N-2-hydroxyacyl-sphingosine, six additional ceramides differing in the grade of hydroxylation of either the sphingosine base or the fatty acid have been identified in the epidermis. Here we report on the characterization of an IgM-enriched polyclonal mouse serum against ceramide. In dot blot assays with purified epidermal lipids the antiserum bound to a similar extent to N-acyl-sphingosine (ceramide 2), N-acyl-4-hydroxysphinganine (ceramide 3), and N-(2-hydroxyacyl)-sphingosine (ceramide 5), whereas no specific reaction was detected with glycosylceramides, sphingomyelin, free sphingosine, phospholipids, or cholesterol. In contrast, a monoclonal IgM antibody, also claimed to be specific for ceramide, was shown to bind specifically to sphingomyelin and therefore was not further investigated. In thin-layer chromatography immunostaining with purified lipids a strong and highly reproducible reaction of the antiserum with ceramide 2 and ceramide 5 was observed, whereas the reaction with ceramide 1 and ceramide 3 was weaker and more variable. Ceramide 2 and ceramide 5 were detected in the nanomolar range at serum dilutions of up to 1:100 by dot blot and thin-layer immunostaining. In thin-layer chromatography immunostaining of crude lipid extracts from human epidermis, the antiserum also reacted with N-(2-hydroxyacyl)-4-hydroxysphinganine (ceramide 6) and N-(2-hydroxyacyl)-6-hydroxysphingosine (ceramide 7). Furthermore, the suitability of the antiserum for the detection of endogenous ceramide by immunolight microscopy was demonstrated on cryoprocessed human skin tissue. Double immunofluorescence labeling experiments with the anti-ceramide antiserum and the recently described anti-glucosylceramide antiserum (Brade et al., 2000, Glycobiology 10, 629) showed that both lipids are concentrated in separate epidermal sites. Whereas anti-ceramide stained the dermal and basal epidermal cells as well as the corneocytes, anti-glucosylceramide staining was concentrated in the stratum granulosum. In conclusion, the specificity and sensitivity of the reagent will enable studies on the subcellular distribution and biological functions of endogenous ceramide.  相似文献   

16.
Ali MR  Cheng KH  Huang J 《Biochemistry》2006,45(41):12629-12638
The effect of brain ceramide on the maximum solubility of cholesterol in ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol, and ceramide was investigated at 37 degrees C by a cholesterol oxidase (COD) reaction rate assay and by optical microscopy. The COD reaction rate assay showed a sharp increase in cholesterol chemical potential as the cholesterol mole fraction approaches the solubility limit. A decline in the COD reaction rate was found after the formation of cholesterol crystals. The maximum solubility of brain ceramide in POPC bilayers was determined to be 68 +/- 2 mol % by microscopy. We found that ceramide has a much higher affinity for the ordered bilayers than cholesterol, and the maximum solubility of cholesterol decreases with the increase in ceramide content. More significantly, the displacement of cholesterol by ceramide follows a 1:1 relation. At the cholesterol solubility limit, adding one more ceramide molecule to the lipid bilayer drives one cholesterol out of the bilayer into the cholesterol crystal phase, and cholesterol is incapable of displacing ceramide from the bilayer phase. On the basis of these findings, a ternary phase diagram of the POPC/cholesterol/ceramide mixture was constructed. The behaviors of ceramide and cholesterol can be explained by the umbrella model. Both ceramide and cholesterol have small polar headgroups and relatively large nonpolar bodies. In a PC bilayer, ceramide and cholesterol compete for the coverage of the headgroups of neighboring PC to prevent the exposure of their nonpolar bodies to water. This competition results in the 1:1 displacement as well as the displacement of cholesterol by ceramide from lipid raft domains.  相似文献   

17.
Raymond MN  Le Stunff H 《FEBS letters》2006,580(1):131-136
Macrophage ionotropic P2X7 receptors regulate cell-death through ill-defined signaling pathways. Here, we investigated the role of ceramide, an apoptogenic sphingolipid and showed that ATP stimulated ceramide accumulation in macrophages. Benzoylbenzoyl-ATP, a potent P2X7 agonist, was able to mimic the effects of ATP on ceramide accumulation while oxidized ATP had the opposite effect. Ceramide accumulation was blocked by de novo ceramide biosynthesis inhibitors. Interestingly, ATP-induced caspase-3/7 activation was dependent on ceramide generation. Finally, we showed that de novo ceramide biosynthesis is involved in ATP-induced macrophage death in a caspase-dependent manner. Our results indicate a novel role of ceramide in P2X7-regulated cell-death.  相似文献   

18.
Ceramide 1-Phosphate Phosphatase Activity in Brain   总被引:1,自引:0,他引:1  
Recent studies have implicated sphingolipids in a variety of intracellular signaling systems. The finding that a calcium-stimulated ceramide kinase copurifies with neurotransmitter-containing vesicles suggests that ceramide, or one of its metabolites, has a role in neurotransmitter release. As a step toward understanding the role of ceramide kinase in vesicle functioning, this study sought to determine the metabolic fate of the product, ceramide 1-phosphate. We report that ceramide 1-phosphate is not deacylated by brain ceramidases to produce sphingosine 1-phosphate. It is, however, the substrate for a phosphatase activity that we name ceramide 1-phosphate phosphatase (CPPase). Subcellular fractionation studies suggest that CPPase is found in the synaptic terminal and is associated with both synaptic vesicle and plasma membranes. Divalent cations, most notably calcium, inhibit CPPase activity although not at concentrations that activate ceramide kinase. The existence of both ceramide kinase and CPPase activities at the synapse suggests that ceramide 1-phosphate production regulates some aspect of synaptic vesicle functioning.  相似文献   

19.
Ceramide signaling in fenretinide-induced endothelial cell apoptosis   总被引:6,自引:0,他引:6  
Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.  相似文献   

20.
Much discussion has recently centred around the biochemical mechanisms by which ceramide is produced in signalling pathways. Since ceramide is virtually insoluble in aqueous solutions, the biological effects of ceramide should be considered in the context of its generation within the membrane lipid bilayer. To this end, we now summarize recent data describing some biophysical properties of ceramide that are of relevance for understanding the mode of ceramide action as a second messenger, and, as a consequence, how the site(s) of ceramide generation might impact upon its role in signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号