首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, two technically important polymer blends composed of isotactic poly (methyl methacrylate) (iPMMA) or syndiotactic poly (methyl methacrylate) (sPMMA) and isotactic poly (vinyl chloride) (iPVC) have been extensively investigated by molecular dynamics simulations. It is confirmed that sPMMA exhibits stronger interactions with iPVC than does iPMMA, and the non-conventional hydrogen bonds (HBs) occur between the two distinct components. Furthermore, the HBs in sPMMA/iPVC are more than those in iPMMA/iPVC, and the structural relaxation of HBs is closely associated with the backbone chain dynamics, which well explain the experimental trends in miscibility of the two systems and in glass transition temperature of single components. It should be noted that these results cannot be directly obtained by the experiments and single simulations, and the multiscale schemes used to prepare the initial all-atomistic configurations can play an important role. This work provides some key clues to improve the performance of polymer materials.  相似文献   

2.
Guo WX  Huang KX 《Biopolymers》2004,74(3):248-255
Poly(dimer acid-brassylic acid) [P(DA-BA)] copolymers and poly(dimer acid-pentadecandioic acid) [P(DA-PA)] copolymers were prepared by melt polycondensation of the corresponding mixed anhydride prepolymers. The copolymers were characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle x-ray powder-diffraction, and thermal gravimetric analysis (TGA). In vitro studies show that all the copolymers are degradable in phosphate buffer at 37 degrees C, and leaving an oily dimer acid residue after hydrolysis for the copolymer with high content of dimer acid. The release profiles of hydrophilic model drug, ciprofloxcin hydrochloride, from the copolymers, follow first-order release kinetics. All the preliminary results suggested that the copolymer might be potentially used as drug delivery devices.  相似文献   

3.
Marine biofouling has detrimental effects on the environment and economy, and current antifouling coatings research is aimed at environmentally benign, non-toxic materials. The possibility of using contact-active coatings is explored, by considering the antialgal activity of cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The antialgal activity was investigated via zoospore settlement and sporeling growth assays of the marine algae Ulva linza and U. lactuca. The assay results for PDMAEMA brushes were compared to those for anionic and neutral surfaces. It was found that only PDMAEMA could disrupt zoospores that come into contact with it, and that it also inhibits the subsequent growth of normally settled spores. Based on the spore membrane properties, and characterization of the PDMAEMA brushes over a wide pH range, it is hypothesized that the algicidal mechanisms are similar to the bactericidal mechanisms of cationic polymers, and that further development could lead to successful contact-active antialgal coatings.  相似文献   

4.
Adamantane-modified compounds are known to form stable complexes with beta-cyclodextrins (beta-CD) by host-guest interactions. In this study, the inclusion complex formed between beta-CD cavities and the adamantane group was evaluated for the elaboration of a cation-exchange support. The synthesis of the chromatographic supports involved three steps: (i) a polymer of beta-CD was grafted to diol-modified silica, (ii) a dextran polymer was modified by both adamantane groups and ionizable COOH functions, (iii) the dextran derivative (Ad-Dex-COOH) was bound to the chromatographic support by complexation between the adamantane groups of the dextran and beta-CD cavities of the support. The polymer immobilization on the beta-CD support was successful as the resulting support exhibited weak cation-exchange properties. The stationary phase was easy to prepare under mild conditions (aqueous media, room temperature) and was quite stable when using aqueous mobile phases. The chromatographic behaviour of model proteins was studied in isocratic elution by examining the effect of salt concentration in the buffer on retention. A mixed retention mode was found for lysozyme, revealing both electrostatic and hydrophobic interactions with the stationary phase.  相似文献   

5.
6.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   

7.
Chemical modification of chitosan by grafting with PLA (CS-g-PLA) was developed via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediated coupling reaction. The introduction of PLA disrupted the crystalline structure of chitosan, improved its solubility and thermal stability. Low degree of PLA substitution showed better degradation efficiency than chitosan and PLA. Weight loss of CS-g-PLA6 and CS-g-PLA4 was 87% and 94%, respectively, in 7 days enzymatic degradation study. CS-g-PLA2 was totally degraded in 1 day. Self-assembly behavior was studied using pyrene fluorescence dye technique and found to be PLA grafting level dependent. CS-g-PLA with low grafting degree showed hydrophilic, self-assembling properties and controllable biodegradability that may widen its applications.  相似文献   

8.
A permselective membrane fabricated from photo‐cross‐linked poly(hydroxyethyl methacrylate) (pHEMA) was studied as a potential selective membrane that can eliminate electrochemical interferences commonly faced by a hydrogen peroxide‐based biosensor. The quantitative selection of the permselective membrane was based on the permeabilities of hydrogen peroxide and acetaminophen (AC). AC was used as a model of the interfering substance due to its neutral nature. pHEMA membrane with the cross‐linking ratio of 0.043 was found to achieve a selectivity of hydrogen peroxide over AC of 10, while maintaining an acceptable degree of hydrogen peroxide response. A two‐layer glucose biosensor model consisting of glucose oxidase entrapped within a freeze‐thawed poly(vinyl alcohol) matrix and the cross‐linked pHEMA membrane was challenged with AC, ascorbic acid and uric acid. 0.2 mM AC and 0.2 mM ascorbic acid were completely eliminated. However, 0.2 mM uric acid could not be completely eliminated and still gave a bias of approximately 6.6% relative to 5 mM glucose. The results showed that cross‐linked pHEMA was quite promising as an interference eliminating inner membrane.  相似文献   

9.
The aim of this study was to generate a new type of nanoparticles made of quaternized chitosan (QCS) and poly (aspartic acid) and to evaluate their potential for the association and delivery of protein drugs. QCS and poly (aspartic acid) were processed to nanoparticles via the ionotropic gelation technique. The size, polydispersity, zeta potential, and morphology of the nanoparticles were characterized. Entrapment studies of the nanoparticles were conducted using bovine serum albumin (BSA) as a model protein. The effects of the pH value of nanoparticles with different QCS/poly (aspartic acid) ratios, QCS molecular weight (MW), poly (aspartic acid) concentration, and BSA concentration on the nanoparticle size, the nanoparticle yield, and BSA encapsulation were studied in detail. Suitably pH value of nanoparticles with different QCS/poly (aspartic acid) ratios, moderate QCS MW, optimal concentration ratio of poly (aspartic acid), and QCS favored more nanoparticles formed and higher BSA encapsulation efficiency. The release of BSA from nanoparticles was pH-dependent. Fast release occurred in 0.1 M phosphate buffer solution (PBS, pH 7.4), while the release was slow in 0.1 M HCl (pH 1.2). The results showed that the new QCS/poly (aspartic acid) nanoparticles have a promising potential in protein delivery system.  相似文献   

10.
Spherical nanoparticles of ZrO2 with 2 and 10 mol% EuO1.5 up to 20 nm size were prepared by the method of hydrothermal synthesis for luminescent functionalization of the polymer–inorganic nanocomposites based on poly(methyl methacrylate). Surface modification of oxide nanoparticles was carried out by 3‐(trimethoxysilyl)propyl methacrylate, dimethoxymethylvinyl silane and 2‐hydroxyethyl methacrylate to provide uniform distribution and to prevent agglomeration of nanosized filler in the polymer matrix. Polymer–inorganic composites were synthesized by in situ free radical polymerization in bulk. Structuring of ZrO2‐EuO1.5 nanoparticles in the poly(methyl methacrylate) was studied by very‐small‐angle neutron scattering. According to the results, the dependence of photoluminescent properties of ZrO2‐EuO1.5 nanoparticles on the content of lanthanide, the symmetry of the crystal field, surface treatment and the polymer matrix were established. A correlation was shown between Stark splitting in luminescence spectra of ZrO2‐EuO1.5 nanoparticles and their phase composition. Using MMT‐assay it was shown that composites based on poly(methyl methacrylate) and ZrO2‐EuO1.5 nanoparticles do not have cytotoxic properties, which makes it possible to use them as prosthesis materials with contrasted and luminescent imaging properties.  相似文献   

11.
Crystallization behavior and environmental biodegradability were investigated for the films of bacterial poly(3-hydroxybutyric acid) (PHB) blends with chitin and chitosan. The blend films showed X-ray diffractive peaks that arose from the PHB crystalline component. It was suggested that the lamellar thickness of the PHB crystalline component in the blends was large enough to show detectable X-ray diffractive peaks, but this was too small to show observable melting endotherm in the DSC thermogram and the crystalline band absorption in the FT-IR spectrum. In the PHB/chitin and PHB/chitosan blends, thermal transition temperatures of PHB amorphous region observed by dynamic mechanical thermal analysis were almost the same as that of neat PHB. Both the PHB/chitin and the PHB/chitosan blend films biodegraded in an environmental medium. Several blend films showed faster biodegradation than the pure-state component polymers.  相似文献   

12.
It was found that an optically active copolyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), denoted as P(3HB-co-3HV), is synthesized by Alcaligenes eutrophus H16 from several amino acids under various fermentation conditions. The optimum condition for the biosynthesis from one amino acid, threonine, was investigated and its biosynthetic pathway was discussed on the basis of the relation between the fermentation condition and the co-monomer composition of the produced polyesters.  相似文献   

13.
14.
Semi-interpenetrating networks (semi-IPNs), where poly(lactide-co-glycolide) (PLGA) molecules were entrapped in the crosslinked matrices of poly(3-hydroxyundecenoate) (PHU), were prepared by irradiating homogeneous solutions of PHU and PLGA in chloroform with UV light. Attenuated total reflectance infrared spectroscopy showed that the PLGA chains were entrapped in PHU networks. The semi-IPNs showed enhanced mechanical strength as the PLGA content increased. The semi-IPNs were incubated at 37 °C in a 0.01N NaOH solution, and the extent of hydrolytic degradation was investigated by monitoring changes in various parameters such as water uptake, pH, mass, and morphology. Hydrolysis of semi-IPNs were significantly affected by the presence of PLGA. A semi-IPN prepared from a 9:1 (by weight) mixture of PHU and PLGA lost 25% of its original weight in 12 weeks while a PHU sample containing no PLGA lost only 5% of its weight during the same period under identical conditions. The hydrolysis was most likely accelerated when the pH of the medium was lowered by the hydrolyzed products of PLGA, 2-hydroxyalkanoic acids. These results showed that hydrolysis of PHA could be enhanced by incorporating a second component that lowered the pH of the hydrolysis system.  相似文献   

15.
Manna A  Paul AK 《Biodegradation》2000,11(5):323-329
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)].  相似文献   

16.
Local conformation and overall conformation of poly(γ‐DL‐glutamic acid) (PγDLGA) and poly(γ‐L‐glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by 1H‐NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random‐coil in a range of ε > ε*, where ε* is about 0.3, 0.35, 0.45, and 0.5 for added‐salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε*, however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random‐coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 191–198, 2016.  相似文献   

17.
Two poly(ɛ- l -lysine) (ɛ-PL) producer strains of Streptomyces celluloflavus secreted a novel polymeric substance into their culture broths along with ɛ-PL. Three types of HPLC analysis plus one- and two-dimensional 1H and 13C nuclear magnetic resonance experiments revealed that the secreted substance was poly(γ- l -diaminobutanoic acid) (γ-PAB), an l -α,γ-diaminobutanoic acid ( l -DAB) homopolymer linking between γ-amino and α-carboxylic acid functional groups. The γ-PABs from the two strains had an identical chemical structure, and the same number-average molecular weight of 2100–2200. No copolymers composed of the two amino acids l -DAB and l- lysine were found in either of the broths from the producers. Both strains coproduced high levels of the two poly(amino acid)s in the presence of SO42− at pH 4.0 and 4.5 L min−1 aeration in a 5-L jar fermentor. γ-PAB exhibited strong inhibitory activities against various yeasts and weaker actions against bacteria than ɛ-PL. γ-PAB may have various biological functions similar to ɛ-PL, and the use of γ-PAB along with ɛ-PL would be advantageous for technical applications in various fields.  相似文献   

18.
The helix-helix transitions which occur in poly(dG-dC) · poly(dG-dC) and in poly (dG-m5dC) · poly(dG-m5dC) are commonly assumed to be changes between the right-handed A- or B-DNA double helices and the left-handed Z-DNA structure. The mechanisms for such transconformations are highly improbable, especially when they are supposed to be active in long polynucleotide chains organised in semicrystalline fibres. The present alternative possibility assumes that rather than the Z-DNA it is a right-handed double helix (S-DNA) which actually takes part in these form transitions. Two molecular models of this S form, in good agreement with X-ray measurements, are proposed. They present alternating C(2′)-endo and C(3′)-endo sugar puckering like the “alternating B-DNA” put forward some years ago. Dihedral angles, sets of atomic coordinates and stereo views of the two S-DNA structures are given, together with curves of calculated diffracted intensities. Furthermore, we question the possibility of obtaining semicrystalline fibres with triple helices of poly(dA) · 2poly(dT) in a way which renders X-ray diffraction efficient. It is suggested that, up to now, only double helices of poly(dA) · poly(dT) can actually be observed by fibre X-ray diffraction measurements. Received: 30 March 1999 / Revised version: 30 June 1999 / Accepted: 30 June 1999  相似文献   

19.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

20.
Abstract: Lactic acid has been an intermediate-volume specialty chemical (world production ∼ 40,000 tons/yr) used in a wide range of food processing and industrial applications. Lactic acid has the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly 'green' solvents, and specialty chemical intermediates. The recent announcements of new development-scale plants for producing lactic acid and polymer intermediates by major U.S. companies, such as Cargill, Ecochem (DuPont/ConAgra), and Archer Daniels Midland, attest to this potential.
In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of lactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. Thus, the emerging technologies can use environmentally sound processes to produce environmentally useful products from lactic acid. The process economics of some of these processes and products can also be quite attractive. In this paper, the recent technical advances in lactic and polyactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号