首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In the present work we examined nonhomologous integration of plasmid DNA in a yku70 mutant. Ten of 14 plasmids integrated as composite elements, including Ty sequences probably originating from erroneous strand-switching and/or priming events. Three additional plasmids integrated via Ty integrase without cointegrating Ty sequences, as inferred from 5-bp target site duplication and integration site preferences. Ty integrase-mediated integration of non-Ty DNA has never been observed in wild-type cells, although purified integrase is capable of using non-Ty DNA as a substrate in vitro. Hence our data implicate yKu70 as the cellular function preventing integrase from accepting non-Ty DNA as a substrate.  相似文献   

4.
5.
Retrotransposable elements are genetic entities which move and replicate within host cell genomes. We have previously reported on the structures and genomic distributions of two non-long terminal repeat (non-LTR) retrotransposons, DRE and Tdd-3, in the eukaryotic microorganism Dictyostelium discoideum. DRE elements are found inserted upstream, and Tdd-3 elements downstream, of transfer RNA (tRNA) genes with remarkable position and orientation specificities. The data set currently available from the Dictyostelium Genome Project led to the characterisation of two repetitive DNA elements which are related to the D. discoideum non-LTR retrotransposon Tdd-3 in both their structural properties and genomic distributions. It appears from our data that in the D. discoideum genome tRNA genes are major targets for the insertion of mobilised non-LTR retrotransposons. This may be interpreted as the consequence of a process of coevolution, allowing a viable population of retroelements to transpose without being deleterious to the small microbial host genome which carries only short intergenic DNA sequences. A new nomenclature is introduced to designate all tRNA gene-targeted non-LTR retrotransposons (TREs) in the D. discoideum genome. TREs inserted 5′ and 3′ of tRNA genes are named TRE5 and TRE3, respectively. According to this nomenclature DRE and Tdd-3 are renamed TRE5-A and TRE3-A, respectively. The new retroelements described in this study are named TRE3-B (formerly RED) and TRE3-C. Received: 27 May 1999 / Accepted: 23 July 1999  相似文献   

6.
We have identified a composite element, Ty4, in S. cerevisiae that is ca 6.3 kb in length and contains two tau sequences as long terminal repeats. According to hybridization analyses, Ty4 occurs in low but varying copy number (one to four copies) in different yeast strains. By several criteria, Ty4 is a novel type of retroelement which is similar but not related to the other Ty elements in yeast. Two cosmid clones from strain C836 (c90 and c476) carrying individual copies of Ty4 were isolated. By restriction analysis and nucleotide sequence we show that c476 derives from the 'transposition right arm hot spot' of chromosome III [1]. The analysis of c476 revealed that an initiator tRNA(Met) gene is present at this locus and that an unusual concentration of different Ty elements has occurred: in addition to the Ty4, a Ty1 and a Ty2 element were detected in this region, confirming its highly polymorphic character.  相似文献   

7.
8.
The integrase of the Saccharomyces cerevisiae retrotransposon Ty1 integrates Ty1 cDNA into genomic DNA likely via a transesterification reaction. Little is known about the mechanisms ensuring that integrase does not integrate non-Ty DNA fragments. In an effort to elucidate the conditions under which Ty1 integrase accepts non-Ty DNA as substrate, PCR fragments encompassing a selectable marker gene were transformed into yeast strains overexpressing Ty1 integrase. These fragments do not exhibit similarity to Ty1 cDNA except for the presence of the conserved terminal dinucleotide 5′-TG-CA-3′. The frequency of fragment insertion events increased upon integrase overexpression. Characterization of insertion events by genomic sequencing revealed that most insertion events exhibited clear hallmarks of integrase-mediated reactions, such as 5 bp target site duplication and target site preferences. Alteration of the terminal dinucleotide abolished the suitability of the PCR fragments to serve as substrates. We hypothesize that substrate specificity under normal conditions is mainly due to compartmentalization of integrase and Ty cDNA, which meet in virus-like particles. In contrast, recombinant integrase, which is not confined to virus-like particles, is able to accept non-Ty DNA, provided that it terminates in the proper dinucleotide sequence.  相似文献   

9.
10.
11.
12.
13.
One of the causes of genome size expansion is considered to be amplification of retrotransposons. We determined nucleotide sequences of 24 PCR products for each of six retrotransposons in Brassica rapa and Brassica oleracea. Phylogenetic trees of these sequences showed species-specific clades. We also sequenced STF7a homologs and Tto1 homologs, 24 PCR products each, in nine diploids and three allopolyploids, and constructed phylogenetic trees. In these phylogenetic trees, species-specific clades of diploid species were also formed, but retrotransposons of allopolyploids were clustered into the clades of their original genomes, indicating that these two retrotransposons amplified after speciation of the nine diploids. Genetic variation in these retrotransposons may have arisen before emergence of allopolyploid species. There was a positive correlation between the genome size and the average number of substitutions of STF7a and Tto1 homologs in at least seven diploids. The implications of these results in the genome evolution of Brassicaceae are herein discussed.  相似文献   

14.
15.
16.
17.
Ty1 and delta elements occur adjacent to several tRNA genes in yeast   总被引:18,自引:2,他引:16       下载免费PDF全文
A Eigel  H Feldmann 《The EMBO journal》1982,1(10):1245-1250
A comparative analysis of a number of yeast DNA-pBR322 recombinant plasmids carrying repetitive sequence elements has revealed that Ty1 or delta elements occur in the vicinity of several tRNA genes. Four examples have been characterized in detail: three glutamate tRNA genes and a serine tRNA gene. The tRNAGlu3 genes occupy different chromosomal locations; two of these genes are found adjacent to Ty1 elements, and the third is found adjacent to an independent delta element. A delta unit is also found adjacent to a tRNASer2 gene. Next to one of the tRNAGlu3 genes, the delta element is joined to a truncated sigma element. Junctions between different delta units were characterized by the sequence analysis of two DNA segments that carry no tRNA genes.  相似文献   

18.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

19.
Jordan IK  McDonald JF 《Genetics》1999,151(4):1341-1351
The Saccharomyces cerevisiae genome contains five families of long terminal repeat (LTR) retrotransposons, Ty1-Ty5. The sequencing of the S. cerevisiae genome provides an unprecedented opportunity to examine the patterns of molecular variation existing among the entire genomic complement of Ty retrotransposons. We report the results of an analysis of the nucleotide and amino acid sequence variation within and between the five Ty element families of the S. cerevisiae genome. Our results indicate that individual Ty element families tend to be highly homogenous in both sequence and size variation. Comparisons of within-element 5' and 3' LTR sequences indicate that the vast majority of Ty elements have recently transposed. Furthermore, intrafamily Ty sequence comparisons reveal the action of negative selection on Ty element coding sequences. These results taken together suggest that there is a high level of genomic turnover of S. cerevisiae Ty elements, which is presumably in response to selective pressure to escape host-mediated repression and elimination mechanisms.  相似文献   

20.
Increasing amounts of mitochondrial [32P] tRNA (4S fraction), were hybridized with mitochondrial DNA OF Saccharomyces cerevisiae. At saturation, the calculated number of genes for 4S mitochondrial RNA was 20. Mitochondrial [32P] tRNA eluted from the hydrids obtained either with an excess of tRNA or an excess of DNA showed, after alkaline hydrolysis and chromatography, a G+C content of 28 and 35 p. cent respectively. This last value is similar to that found with the total 4S fraction. The odd nucleotides T (about 1T per sequence), U, hU are present in mitochondrial tRNA. Some sequence may begin with pG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号