首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary structure of five diheme cytochromes from photosynthetic bacteria recently determined in our laboratory lead to the first insights in the structural diversity of this type of cytochrome. A schematic overview is given, relating these structures to the four diheme cytochrome sequences already available. The comparison reveals unexpected homologies.  相似文献   

2.
The genetically and experimentally accessible organs of Drosophila, such as the heart or blood-forming tissues, have become a fertile ground for systematic projects of gene discovery and for functional studies of gene networks and signaling pathways. One argument justifying this approach is the often-tacit assumption that clear-cut homologies can be established between the Drosophila organs and their vertebrate counterparts. Here we investigate this assumption by surveying pertinent aspects of vascular structure and development in different invertebrate phyla, in the hope that this information will help to reveal the ancestral condition of the vascular system. Evolutionary scenarios that derive the structure of the cardiovascular system of extant animal taxa from the ancestral condition will be used to qualify hypotheses regarding homologies that are based on molecular similarities.  相似文献   

3.
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.  相似文献   

4.
Homologies between tRNAs and rRNAs are identified in searches using various combinations of Escherichia coli, yeast, Halobacterium volcanii and bovine mitochondrial sequences. As in previously reported comparisons, the homologies are too frequent and long to be attributed to coincidence, and similar frequencies from inter- and intraspecies comparisons preclude evolutionary convergence as an explanation. In contrast to the earlier studies, patterns in the positioning of the homologies are now described. Graphing the positions of the homologies along orthogonal axes that represent numbers of bases in tRNA and rRNA shows recurring patterns in the alignments. Preferred spacings of integral multiples of 9 bases are found, suggesting a periodicity in the ancestral structure from which the tRNAs and rRNAs were derived. The periodicity also suggests persistence of a modular format in both classes of molecules that survived changes in sequence that occurred during evolution. A model is proposed for the generation of the ancestral molecule and the early evolution of the coding mechanism. Elongation by self-priming and self-templating gave a hairpin with a 9 base stem. Two additional cycles gave a 70-80 base tRNA-like structure. Additional cycles yielded a tandem repeat of this unit, roughly equivalent in size to the combined rRNAs of prokaryotes. The larger RNA would contain the information and materials for generating the smaller RNAs. It is proposed that multiple recombination among such molecules gave composite structures, presumed progenitors of today's t- and rRNAs. The distribution of the conserved domains among today's species argues for the existence of the ancestral molecule prior to divergence of lines leading to the various kingdoms. Their presence in the different nucleic acids suggests the existence of a nucleic acid with multiple functions prior to partitioning of these functions among the nucleic acids that exist today. The occurrence of overlaps, overlays and consensus alignments among the homologies provides the means for identifying contiguous and neighboring conserved regions and holds promise for the reconstruction of the sequence of an ancestral molecule.  相似文献   

5.
Evolution of type II DNA methyltransferases. A gene duplication model   总被引:30,自引:0,他引:30  
On the basis of consensus sequences, which had previously been defined for two groups of closely related cytosine-specific and adenine-specific DNA methyltransferases, homologies can be detected that indicate a common origin for these proteins. Intramolecular comparisons of several of these enzymes reveal homology relationships, which suggests that gene duplication is a phylogenetic principle in the evolution of the Mtases. One or two duplications of an ancestral gene encoding a 12,000 to 16,000 Mr protein, followed by divergent evolution, may have led to very different protein structures and could explain the differences in amino acid sequences, molecular weights and biochemical properties. Intermolecular and intramolecular homologies were also recognized in type II restriction endonucleases, suggesting a very similar evolutionary pathway.  相似文献   

6.
A model is proposed for the early evolution of the coding mechanism. A primordial RNA embodies the functions of today's nucleic acids in a single molecule. The molecule is generated by successive rounds of self-priming and -templating. After proximity is assured by enclosure in a cell, the functions can be partitioned among more efficient specialized molecules. The prediction of sequence homologies in later forms prompted a search for matches between t- and r-RNAs. These are described. Their distributions offer clues to their origins. The existance of overlapping homologies indicates an approach to the reconstruction of an ancestral molecule.  相似文献   

7.
A model is proposed for the early evolution of the coding mechanism. A primordial RNA embodies the functions of today's nucleic acids in a single molecule. The molecule is generated by successive rounds of self-priming and-templating. After proximity is assured by enclosure in a cell, the functions can be partitioned among more efficient specializel molecules. The prediction of sequence homologies in later forms prompted a search for matches between t- and r-RNAs. These are described. Their distributions offer clues to their origins. The existance of overlapping homologies indicates an approach to the reconstruction of an ancestral molecule.  相似文献   

8.
With the use of proton-proton Overhauser enhancement experiment the spatial arrangement relative to the heme group of amino acid side chains in the heme crevice of horse ferrocytochrome c and ferrocytochrome c-552 from euglena gracilis was investigated. From these data and the known crystal structure for mammalian cytochromes c, individual assignments were obtained for several aromatic residues in horse ferrocytochrome c. This then provided a basis for delineating homologies between the polypeptide conformations near the heme group in horse ferrocytochrome c and ferrocytochrome c-552, for which no crystal structure has as yet been described.  相似文献   

9.
N-Terminal homology in three cysteinyl proteases from Papaya latex   总被引:2,自引:0,他引:2  
Sequences to residue 17 have been determined for the three Papaya cysteinyl proteases, chymopapain and papaya peptidase A and B. Extensive homologies were found for these three enzymes and with papain and bromelain. These results suggest that the five sulphydryl enzymes discussed derive from a common ancestral gene.  相似文献   

10.
Many tRNAs of E. coli and yeast contain stretches whose base sequences are similar to those found in their respective rRNAs. The matches are too frequent and extensive to be attributed to coincidence. They are distributed without discernible pattern along and among the RNAs and between the two species. They occur in loops as well as in stems, among both conserved and non-conserved regions. Their distributions suggest that they reflect common ancestral origins rather than common functions, and that they represent true homologies.  相似文献   

11.
The canonical number of eight photoreceptors and their arrangement in the ommatidia of insect compound eyes is very conserved. However significant variations exist in selective groups, such as the Lepidoptera and Hymenoptera, which independently evolved additional photoreceptors. For this and historical reasons, heterogeneous labeling conventions have been in use for photoreceptor subtypes, despite developmentally and structurally well-defined homologies. Extending earlier efforts, we introduce a universal photoreceptor subtype classification key that relates to the Drosophila numbering system. Its application is demonstrated in major insect orders, with detailed information on the relationship to previous conventions. We then discuss new insights that result from the improved understanding of photoreceptor subtype homologies. This includes evidence of functionally imposed ground rules of differential opsin expression, the underappreciated role of R8 as ancestral color receptor, the causes and consequences of parallel R7 photoreceptor addition in Hymenoptera and Lepidoptera, and the ancestral subfunctionalization of outer photoreceptors cells, which may be only developmentally recapitulated in Drosophila. We conclude with pointing out the need for opsin expression data from a wider range of insect orders.  相似文献   

12.
Redox protein complexes between type I and type II tetraheme cytochromes c(3) from Desulfovibrio vulgaris Hildenborough are here analyzed using theoretical methodologies. Various complexes were generated using rigid-body docking techniques, and the two lowest energy complexes (1 and 2) were relaxed using molecular dynamics simulations with explicit solvent and subjected to further characterization. Complex 1 corresponds to an interaction between hemes I from both cytochromes c(3). Complex 2 corresponds to an interaction between the heme IV from type I and the heme I from type II cytochrome c(3). Binding free energy calculations using molecular mechanics, Poisson-Boltzmann, and surface accessibility methods show that complex 2 is more stable than complex 1. Thermodynamic calculations on complex 2 show that complex formation induces changes in the reduction potential of both cytochromes c(3), but the changes are larger in the type I cytochrome c(3) (the largest one occurring on heme IV, of approximately 80 mV). These changes are sufficient to invert the global titration curves of both cytochromes, generating directionally in electron transfer from type I to type II cytochrome c(3), a phenomenon of obvious thermodynamic origin and consequences, but also with kinetic implications. The existence of processes like this occurring at complex formation may constitute a natural design of efficient redox chains.  相似文献   

13.
NMR and visible spectroscopy were used to characterize the type II tetraheme cytochrome c(3) isolated from the periplasmic space of Desulfovibrio africanus, a sulfate-reducing bacterium. Although structurally similar to other cytochromes c(3), this protein displays distinct functional properties. Proton NMR signals from the four hemes were assigned to the structure in the ferri- and ferrocytochromes using two-dimensional NMR experiments. The thermodynamic parameters of the hemes and of an acid-base center in the type II cytochrome c(3) were determined using NMR and visible spectroscopies. The thermodynamic features indicate that electrostatic effects dominate all of the interactions between the centers and no positive cooperativity between hemes is observed. The redox-Bohr effect in this protein is associated with the acid-base equilibrium of a propionate of heme II instead of propionate 13 of heme I as is the case for all of the type I cytochromes c(3). These novel functional properties are analyzed together with the redox-linked structural differences reported in the literature and reveal a mechanistic basis for type II cytochromes c(3) having a physiological function that is different from that of type I cytochromes c(3).  相似文献   

14.
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.  相似文献   

15.
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-resolution G-banded chromosomes of the raccoon dog. Dog chromosomes 1, 13, and 19 each correspond to two raccoon dog chromosome segments, while the remaining 35 dog autosomes each correspond to a single segment. In total, 38 dog autosome paints revealed 41 conserved segments in the raccoon dog. The use of dog painting probes has enabled integration of the raccoon dog chromosomes into the previously established comparative map for the domestic dog, Arctic fox (Alopex lagopus), and red fox (Vulpes vulpes). Extensive chromosome arm homologies were found among chromosomes of the red fox, Arctic fox, and raccoon dog. Contradicting previous findings, our results show that the raccoon dog does not share a single biarmed autosome in common with the Arctic fox, red fox, or domestic cat. Comparative analysis of the distribution patterns of conserved chromosome segments revealed by dog paints in the genomes of the canids, cats, and human reveals 38 ancestral autosome segments. These segments could represent the ancestral chromosome arms in the karyotype of the most recent ancestor of the Canidae family, which we suggest could have had a low diploid number, based on comparisons with outgroup species.  相似文献   

16.
The reconstruction of ancestral genome architectures and gene orders from homologies between extant species is a long-standing problem, considered by both cytogeneticists and bioinformaticians. A comparison of the two approaches was recently investigated and discussed in a series of papers, sometimes with diverging points of view regarding the performance of these two approaches. We describe a general methodological framework for reconstructing ancestral genome segments from conserved syntenies in extant genomes. We show that this problem, from a computational point of view, is naturally related to physical mapping of chromosomes and benefits from using combinatorial tools developed in this scope. We develop this framework into a new reconstruction method considering conserved gene clusters with similar gene content, mimicking principles used in most cytogenetic studies, although on a different kind of data. We implement and apply it to datasets of mammalian genomes. We perform intensive theoretical and experimental comparisons with other bioinformatics methods for ancestral genome segments reconstruction. We show that the method that we propose is stable and reliable: it gives convergent results using several kinds of data at different levels of resolution, and all predicted ancestral regions are well supported. The results come eventually very close to cytogenetics studies. It suggests that the comparison of methods for ancestral genome reconstruction should include the algorithmic aspects of the methods as well as the disciplinary differences in data aquisition.  相似文献   

17.
Summary The existence of internal sequence homologies between the N-terminal halves of the gram-negative bacterial major sigma factors and their C-terminal halves, which correspond to minor factors, is reported. In the case of Escherichia-Salmonella sigma-70, an apparent homology was even found between the C-terminal helix-turn-helix DNA-binding motif and the corresponding region of the peptide N half, which, however, is not directly engaged in promoter recognition. It is proposed that major sigma factors may have originated by duplication and fusion of a DNA unit related to the ancestral gene for the whole sigma family. Coevolution of major sigma structures and complex promoters is suggested.  相似文献   

18.
Chromosomal linkage as well as sequence homologies provide unequivocal evidence that the genes for the alpha, beta and gamma chains of fibrinogen arose by successive duplication of a single ancestral gene. Yet, when the three fibrinogen chains are aligned by amino acid homology, the positions of intervening sequences coincide at only two positions for all three chains. While one additional intron occurs at a homologous site in the beta and gamma chains, none of the positions of the remaining 11 introns in the three genes is shared. This arrangement of introns in the three fibrinogen genes suggests that either introns were selectively lost, implying that there is essential information in the retained introns, or the common introns were present in the ancestral fibrinogen gene and introns have been randomly inserted since the triplication of the original gene. The more likely possibility of selective loss of introns implies that the ancestral gene, as it existed about one billion years ago, must have been composed of numerous small exons.  相似文献   

19.
Cytochrome c553 is a monohaemic c type cytochrome isolated from the sulfate reducing bacteria Desulfovibrio,vulgaris. Its midpoint potential value, determined by optical, EPR and polarographic studies is significantly lower than the midpoint potentials reported for other monohaemic cytochromes c (+ 10 mV instead of + 290 mV). In an attempt to study correlations between amino acid sequence, haem iron coordination and haem exposure in cytochromes c, cytochrome c553 is compared with mitochondrial and bacterial c type cytochromes.  相似文献   

20.
Canidae species fall into two categories with respect to their chromosome composition: those with high numbered largely acrocentric karyotypes and others with a low numbered principally metacentric karyotype. Those species with low numbered metacentric karyotypes are derived from multiple independent fusions of chromosome segments found as acrocentric chromosomes in the high numbered species. Extensive chromosome homology is apparent among acrocentric chromosome arms within Canidae species; however, little chromosome arm homology exists between Canidae species and those from other Carnivore families. Here we use Zoo-FISH (fluorescent in situ hybridization, also called chromosomal painting) probes from flow-sorted chromosomes of the Japanese raccoon dog (Nyctereutes procyonoides) to examine two phylogenetically divergent canids, the arctic fox (Alopex lagopus) and the crab-eating fox (Cerdocyon thous). The results affirm intra-canid chromosome homologies, also implicated by G-banding. In addition, painting probes from domestic cat (Felis catus), representative of the ancestral carnivore karyotype (ACK), and giant panda (Ailuropoda melanoleuca) were used to define primitive homologous segments apparent between canids and other carnivore families. Canid chromosomes seem unique among carnivores in that many canid chromosome arms are mosaics of two to four homology segments of the ACK chromosome arms. The mosaic pattern apparently preceded the divergence of modern canid species since conserved homology segments among different canid species are common, even though those segments are rearranged relative to the ancestral carnivore genome arrangement. The results indicate an ancestral episode of extensive centric fission leading to an ancestral canid genome organization that was subsequently reorganized by multiple chromosome fusion events in some but not all Canidae lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号