首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cells irradiated with UV light synthesize lower molecular weight DNA than unirradiated cells. This reduction in molecular weight is greater in xeroderma pigmentosum (XP) cells than in normal cells. The molecular weight of DNA is further reduced by the addition of caffeine to XP cells. By several hours after irradiation, DNA fragments are barely detectable. Cells from excision-proficient and excision-deficient XP patients were studied autoradiographically to produce cytological evidence of DNA chain elongation. Replicate cultures with and without caffeine were synchronized and irradiated with UV light during the S phase. Caffeine was removed in G2, and the cells were labeled with 3H-thymidine. Results showed significantly increased labeling during G2 of excision-deficient XP cells. Labeling was dependent on both time of irradiation and presence of caffeine. The XP variant cells had no increase in labeling for any irradiation time.Published with the approval of the Director of the West Virginia Agricultural Experiment Station as Scientific Paper No. 1608. Supported by N.I.C. Grant TO1CA05170-10.  相似文献   

2.
The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation can be postponed or diminished by a post-irradiation treatment with 1.0 to 1.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibit depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis have no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiates X-ray-induced cell killing, this reduction in survival is due primarily to effects on cells in S-phase.  相似文献   

3.
In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G2 cells progressed to mitosis in register and without arrest in G2. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G2 arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delay suggests a common basis for delay induction in S and G2 phases.  相似文献   

4.
Cells cultured in the presence of caffeine had high sporulation ability. The sporulation-promotive effect of caffeine was studied, special attention being paid upon changes in nucleic acid metabolism. When transferred to a sporulation medium, the breakdown of RNA, the synthesis of protein, RNA and DNA, commitment to sporulation and the appearance of mature asci took place in caffeine-treated cells significantly earlier than in control cells. Commitment to sporulation occurred before the completion of premeiotic DNA synthesis in both caffeine-treated and control cells.  相似文献   

5.
Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8–9 x 105 cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G1 Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.  相似文献   

6.

Background

Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation.

Results

Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined.

Conclusion

Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of enhanced BER activities was found in irradiated cells arrested in G2 phase.  相似文献   

7.
The survival of biological activity in irradiated transforming deoxyribonucleic acid (DNA) has been assayed in the wild type and a radiation-sensitive mutant of Micrococcus radiodurans. The frequency of transformation with unirradiated DNA was lower in the mutant to about the same extent as the mutant's increased sensitivity to radiation. However, in both the wild type and the mutant, the irradiated DNA that was incorporated into the bacterial genome was repaired to the same extent as determined by the loss of transforming activity with increasing radiation dose. This applied to DNA irradiated either with ionizing or ultraviolet (UV) radiation. The rate of inactivation of biological activity after UV radiation was the same in any of the DNA preparations tested. For ionizing radiation, the rate of inactivation varied up to 40-fold, depending on the DNA preparation used, but for any one preparation was the same whether assayed in the wild type or the radiation-sensitive mutant. When recipient bacteria were irradiated with ionizing or UV radiation immediately before transformation, the frequency of transformation with unirradiated DNA fell, rapidly and exponentially in the case of the sensitive mutant but in a more complicated fashion in the wild type. The repair of DNA irradiated with ionizing radiation was approximately the same whether assayed in unirradiated or irradiated hosts. Thus, irradiation of the host reduced the integration of DNA but not its repair.  相似文献   

8.
9.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

10.
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MAT locus. The difference in levels of stimulation between MATa/MATα diploid and MATα haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MATα gene was introduced by DNA transformation into a MATa/matα::LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATA gene was introduced by DNA transformation into a MATα haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.  相似文献   

11.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

12.
Caffeine inhibits the checkpoint kinase ATM.   总被引:29,自引:0,他引:29  
The basis of many anti-cancer therapies is the use of genotoxic agents that damage DNA and thus kill dividing cells. Agents that cause cells to override the DNA-damage checkpoint are predicted to sensitize cells to killing by genotoxic agents. They have therefore been sought as adjuncts in radiation therapy and chemotherapy. One such compound, caffeine, uncouples cell-cycle progression from the replication and repair of DNA [1] [2]. Caffeine therefore servers as a model compound in establishing the principle that agents that override DNA-damage checkpoints can be used to sensitize cells to the killing effects of genotoxic drugs [3]. But despite more than 20 years of use, the molecular mechanisms by which caffeine affects the cell cycle and checkpoint responses have not been identified. We investigated the effects of caffeine on the G2/M DNA-damage checkpoint in human cells. We report that the radiation-induced activation of the kinase Cds1 [4] (also known as Chk2 [5]) is inhibited by caffeine in vivo and that ATM kinase activity is directly inhibited by caffeine in vitro. Inhibition of ATM provides a molecular explanation of the attenuation of DNA-damage checkpoint responses and for the increased radiosensitivity of caffeine-treated cells [6] [7] [8].  相似文献   

13.
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq?/? mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.  相似文献   

14.
Chilled B16CL4 mouse melanoma cells in phosphate-buffered saline were exposed to ionizing radiation before or after harvesting by gently scraping with a rubber policeman. Cells irradiated when attached had fewer DNA strand breaks than cells that were irradiated in suspension. Dose-response studies indicate that the rate of induction of DNA strand breaks by ionizing radiation is 1.5-fold greater in suspended cells. Irradiation after release of the cells by trypsinization also results in more breaks than irradiation when attached, but this method of harvest is not as damaging as release by rubber policeman. Strand breaks in unirradiated cells are unaffected by the method of cell harvest. These studies suggest that, in radiation studies, care should be exercised to avoid the introduction of artifacts resulting from the methods used to harvest and irradiate cells.  相似文献   

15.
Caffeine induced a mitosis-like state in cultured tobacco (Nicotiana tabacum L.) BY-2 cells after DNA synthesis had been arrested by aphidicolin. Cells were synchronized upon removal of aphidicolin. When aphidicolin was readded, the cell cycle was again interrupted and caffeine, when added with aphidicolin, induced the mitosis-like state in 5–10% of cells.  相似文献   

16.
We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR)-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy.  相似文献   

17.
The effect of temporary treatment with chloramphenicol or rifampicin on the survival of UV irradiated cells of selected Escherichia coli K12 radiation sensitive mutants was examined. Increased survival resulted for both exrA and recA mutants, and also for the unsuppressed lon mutant, but cells of the parent strain and the recB mutant were not rescued. This contrasts with our earlier finding that after exposure of the bacteria to γ-rays, chloramphenicol treatment rescued the exrA and lon mutants but not the recA mutant. We now report that an exrA recA double mutant was rescued by chlramphenicol after UV radiation, but not after anaerobic ionizing radiation. Inclusion of inhibitors of uvrA governed repair, caffeine and 8-methoxypsoralen (8-MOP), in the incubation medium containing chloramphenicol, did not reduce the rescue of the exrA or recA mutants, although caffeine eliminated rescue of the lon mutant, which was itself unaffected by 8-MOP. However it is concluded that chlormaphenicol rescue of the exrA and recA mutants after UV radiation was not entirely independent of the excision-repair process, since the uvrA recA and uvrA exrA double mutants were not rescued by this treatment.  相似文献   

18.
J. B. Boyd  R. B. Setlow 《Genetics》1976,84(3):507-526
Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by X-rays and UV radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following UV radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by X-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine-3H. The data have been employed to construct a model for repair of UV-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed.  相似文献   

19.
The effects of ionizing radiation on bacteria are generally evaluated from the dose-dependent survival ratio, which is determined by colony-forming ability and mutation rate. The mutagenic damage to cellular DNA induced by radiation has been extensively investigated; however, the effects of irradiation on the cellular machinery in situ remain unclear. In the present work, we irradiated Escherichia coli cells in liquid media with gamma rays from 60Co (in doses up to 8 kGy). The swimming speeds of the cells were measured using a microscope. We found that the swimming speed was unaltered in cells irradiated with a lethal dose of gamma rays. However, the fraction of motile cells decreased in a dose-dependent manner. Similar results were observed when protein synthesis was inhibited by treatment with kanamycin. Evaluation of bacterial swimming speed and the motile fraction after irradiation revealed that some E. coli cells without the potential of cell growth and division remained motile for several hours after irradiation.  相似文献   

20.
Caffeine is an efficient inhibitor of DNA repair and DNA damage-activated checkpoints. We have shown recently that caffeine inhibits retroviral transduction of dividing cells, most likely by blocking postintegration repair. This effect may be mediated at least in part by a cellular target of caffeine, the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase. In this study, we present evidence that caffeine also inhibits efficient transduction of nondividing cells. We observed reduced transduction in caffeine-treated growth-arrested cells as well as caffeine-treated terminally differentiated human neurons and macrophages. Furthermore, this deficiency was observed with a human immunodeficiency virus type 1 (HIV-1) vector lacking Vpr, indicating that the effect is independent of the presence of this viral protein in the infecting virion. Finally, we show that HIV-1 transduction of nocodazole-arrested cells is reduced in cells that express an ATR dominant-negative protein (kinase-dead ATR [ATRkd]) and that the residual transduction of ATRkd-expressing cells is relatively resistant to caffeine. Taken together, these data suggest that the effect(s) of caffeine on HIV-1 transduction is mediated at least partly by the inhibition of the ATR pathway but is not dependent on the caffeine-mediated inhibition of cell cycle checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号