首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Ohta  N Sato    T Kuroiwa 《Nucleic acids research》1998,26(22):5190-5198
The complete nucleotide sequence of the mitochondrial genome of a very primitive unicellular red alga, Cyanidioschyzon merolae , has been determined. The mitochondrial genome of C.merolae contains 34 genes for proteins including unidentified open reading frames (ORFs) (three subunits of cytochrome c oxidase, apocytochrome b protein, three subunits of F1F0-ATPase, seven subunits of NADH ubiquinone oxidoreductase, three subunits of succinate dehydrogenase, four proteins implicated in c-type cytochrome biogenesis, 11 ribosomal subunits and two unidentified open reading frames), three genes for rRNAs and 25 genes for tRNAs. The G+C content of this mitochondrial genome is 27.2%. The genes are encoded on both strands. The genome size is comparatively small for a plant mitochondrial genome (32 211 bp). The mitochondrial genome resembles those of plants in its gene content because it contains several ribosomal protein genes and ORFs shared by other plant mitochondrial genomes. In contrast, it resembles those of animals in the genome organization, because it has very short intergenic regions and no introns. The gene set in this mitochondrial genome is a subset of that of Reclinomonas americana , an amoeboid protozoan. The results suggest that plant mitochondria originate from the same ancestor as other mitochondria and that most genes were lost from the mitochondrial genome at a fairly early stage of the evolution of the plants.  相似文献   

2.
Reduction of genome size and gene shortening have been observed in a number of parasitic and mutualistic intracellular symbionts. Reduction of coding capacity is also a unifying principle in the evolutionary history of mitochondria, but little is known about the evolution of gene length in mitochondria. The genes for cytochrome c oxidase subunits I–III, cytochrome b, and the large and small subunit rRNAs are, with very few exceptions, always found on the mitochondrial genome. These resident mitochondrial genes can therefore be used to test whether the reduction in gene lengths observed in a number of intracellular symbionts is also seen in mitochondria. Here we show that resident mitochondrial gene products are shorter than their corresponding counterparts in -proteobacteria and, furthermore, that the reduction of mitochondrial genome size is correlated with a reduction in the length of the corresponding resident gene products. We show that relative genomic AT content, which has been identified as a factor influencing gene lengths in other systems, cannot explain gene length/genome size covariance observed in mitochondria. Our data are therefore in agreement with the idea that gene length evolves as a consequence of selection for smaller genomes, either to avoid accumulation of deleterious mutations or triggered by selection for a replication advantage.  相似文献   

3.
W S Davidson  T P Birt  J M Green 《Génome》1989,32(2):340-342
A restriction map of Atlantic salmon mitochondrial DNA was constructed. The smallest XbaI fragment of the salmon mitochondrial genome was cloned and subjected to partial DNA sequence analysis. This fragment contains the genes for ATPase 6 and cytochrome oxidase III. The putative organisation of the mitochondrial genome relative to the physical map is shown.  相似文献   

4.
Animal mitochondrial DNA genomes are generally single circular molecules, 14-20 kb in size, containing a number of functional RNAs and 13 protein-coding genes. Among these, the COI, COII and COIII genes encode three subunits of cytochrome c oxidase. We have isolated and characterized these three mitochondrial genes from the mesozoan Dicyema, a primitive multicellular animal. Surprisingly, the COI, COII and COIII genes are encoded on three small, separate circular DNA molecules (minicircles) of length 1700, 1599 and 1697 bp, respectively. We estimated the copy number of each minicircle at 100 to 1000 per cell, and have shown a mitochondrial localization of the minicircles by in situ hybridization. Furthermore, we could not detect a putative "maxicircle" DNA molecule containing any combination of the COI, COII and COIII genes using either PCR or genomic Southern hybridization. Thus, our results show a novel mitochondrial genome organization in the mesozoan animal Dicyema.  相似文献   

5.
For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.  相似文献   

6.
I G Young  S Anderson 《Gene》1980,12(3-4):257-265
Bovine-heart mitochondrial DNA from a single animal was isolated and fragments representative of the entire genome cloned into multicopy plasmid vectors to facilitate determination of its complete nucleotide sequence. We present here the sequence of the region covering the gene for cytochrome oxidase subunit II. Comparison of this sequence with the amino acid sequence of the homologous beef-heart protein has enabled the determination of most of the bovine mitochondrial genetic code. The code differs from the "universal" genetic code in that UGA codes for tryptophan and not termination, and AUA codes for methionine and not isoleucine. The only codon family not represented is the AGA/AGG pair normally used for arginine; evidence from other genes suggests that these code for termination in bovine mitochondria. The sequence presented also includes the adjacent tRNAAsp and tRNALys genes. The tRNAAsp gene is separated by one nucleotide from the 5' end of the COII gene and only three bases separate the 3' end of this gene and the adjacent tRNALys gene. This highly compact gene organisation is very similar to that found in the corresponding region of the human mitochondrial genome and the gene arrangement is identical. The structure of the respective bovine and human tRNAs vary primarily the "D-" and "T psi C-loops".  相似文献   

7.
The oxidative capacity of mammalian striated muscles can vary markedly over a nearly 10-fold range, reflecting major differences in the expression of genes that encode enzymes of oxidative metabolism, including genes located exclusively within mitochondrial DNA. To clarify the regulatory events that govern expression of mitochondrial genes in striated muscle, nucleic acid hybridization procedures employing cloned segments of mitochondrial DNA as probes were utilized to determine the concentrations of mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA (a mitochondrial gene product) in rabbit striated muscles of markedly different oxidative capacities. When cardiac muscle and Type I (red, oxidative) skeletal muscle were compared to Type II (white, glycolytic) skeletal muscle, mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA, each increased in direct proportion to increases in oxidative capacity. Furthermore, when the phenotypic characteristics of Type II skeletal muscle were altered by electrical stimulation in vivo, mitochondrial DNA, mitochondrial rRNA, and cytochrome b mRNA also increased proportionately with increases in oxidative capacity. These results indicate that the expression of mitochondrial genes in mammalian striated muscle is proportionate to their copy number, and support the hypothesis that amplification of the mitochondrial genome relative to chromosomal DNA is an important feature underlying enhanced expression of mitochondrial genes in highly oxidative tissues.  相似文献   

8.
Seven segments of mitochondrial DNA (mtDNA), comprising 97% of the mitochondrial genome, were amplified by polymerase chain reaction (PCR) and examined for restriction site variation using 13 restriction endonucleases in three species of Pacific salmon: pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon. The distribution of variability across the seven mtDNA segments differed substantially among species. Little similarity in the distribution of variable restriction sites was found even between the mitochondrial genomes of the even- and odd-year broodlines of pink salmon. Significantly different levels of nucleotide diversity were detected among three groups of genes: six NADH-dehydrogenase genes had the highest; two rRNA genes had the lowest; and a group that included genes for ATPase and cytochrome oxidase subunits, the cytochrome b gene, and the control region had intermediate levels of nucleotide diversity. Genealogies of mtDNA haplotypes were reconstructed for each species, based on the variation in all mtDNA segments. The contributions of variation within different segments to resolution of the genealogical trees were compared within each species. With the exception of sockeye salmon, restriction site data from different genome segments tended to produce rather different trees (and hence rather different genealogies). In the majority of cases, genealogical information in different segments of mitochondrial genome was additive rather than congruent. This finding has a relevance to phylogeographic studies of other organisms and emphasizes the importance of not relying on a limited segment of the mtDNA genome to derive a phylogeographic structure.  相似文献   

9.
《Plant science》1986,43(2):141-149
The mitochondrial genome of fertile, male-sterile and restored cytoplasm lines of wheat has been studied by means of recombinant DNA and hybridization techniques. Using cloned fragments of mitochondrial DNA (mtDNA) from fertile wheat cytoplasms as probes, about 40% of the genome is shown to have a differential hybridization pattern. The use of wheat rRNA and corn cytochrome oxidase subunit II probes indicates that duplication and rearrangement of genes or parts of genes may account for the differences observed. DNA synthesis in isolated mitochondria showed neither preferential labeling of part of the mtDNA nor the presence of extrachromosomal elements.  相似文献   

10.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

11.
The biosynthesis of mammalian mitochondrial cytochromes was explored in primary hepatocyte cultures. When these were pulsed with [35S]methionine in the presence of cycloheximide, eight discrete mitochondrial polypeptides were detected by fluorography after their resolution under denaturing conditions by polyacrylamide gel electrophoresis. Since the pulse labeling of the polypeptides was sensitive to chloramphenicol, an inhibitor of mitochondrial translation, they must be translated on mitochondrial ribosomes. Three were identified as the largest subunits of cytochrome oxidase by their immunoprecipitation with antibody directed against purified rat liver cytochrome oxidase. Another (Mr = 28,000) was identified as one of eight subunits of purified rat liver cytochrome b-c1 complex by its immunoprecipitation with antibody directed against bovine heart b-c1 complex. Since cytochrome b apoprotein is the only product of the mitochondrial genome in the yeast cytochrome b-c1 complex (Krieke, J., Bechmann, H., van Hemert, F. J., Schweyan, R. J., Boer, P. H., Kaudewitz, F., and Groot, G. S. P. (1979) Eur. J. Bio-chem. 101, 607-617), the results strongly suggest that the Mr = 28,000 subunit of liver b-c1 complex is cytochrome b apoprotein. Thus the contribution of the mitochondrial translation system to the cytochrome complexes in liver is identical to that of yeast and Neurospora, and there appears to be no deletion or transfer to the nuclear genome of structural genes for mitochondrially synthesized cytochromes during eukaryotic evolution.  相似文献   

12.
13.
We have determined the physical and genetic map of the 73,000 base-pair mitochondrial genome of a novel yeast species Saccharomyces douglasii. Most of the protein and RNA-coding genes known to be present in the mitochondrial DNA of Saccharomyces cerevisiae have been identified and located on the S. douglasii mitochondrial genome. The nuclear genomes of the two species are thought to have diverged some 50 to 80 million years ago and their nucleo-mitochondrial hybrids are viable but respiratorily deficient. The mitochondrial genome of S. douglasii displays many interesting features in comparison with that of S. cerevisiae. The three mosaic genes present in both genomes are quite different with regard to their structure. The S. douglasii COXI gene has two new introns and is missing the five introns of the S. cerevisiae gene. The S. douglasii cytochrome b gene has one new intron and lacks two introns of the S. cerevisiae gene. Finally, the L-rRNA gene of S. douglasii, like that of S. cerevisiae, has one intron of which the structure is different. Another salient feature of the S. douglasii mitochondrial genome reported here is that the gene order is different in comparison with S. cerevisiae mitochondrial DNA. In particular, a segment of approximately 15,000 base-pairs including the genes coding for COXIII and S-rRNA has been translocated to a position between the genes coding for varl and L-rRNA.  相似文献   

14.
Summary The mitochondrial genome from Cyprinus carpio oocytes is a 10.5 megadalton, circular DNA molecule. The carp mitochondrial DNA was cloned in pBR325. Three recombinant plasmids accounted for the entire genome. Mapping of this DNA using 11 different restriction endonucleases is reported here. Both the large and small rRNA genes were then localized using Southern blot analysis. The subunit I of the cytochrome oxidase, the cytochrome b, the tRNAGlu and the URF 4 genes were localized by nucleotide sequence analysis and homology studies with human mtDNA.Our results suggest that a similar gene order has been maintained in the mitochondrial genomes of Chordata and support the hypothesis of a common ancestor for all vertebrate organelle genomes.This study constitutes the first report on the genome organization of a fish mtDNA and provides information for further investigation in connection with sequence determination, replication, and gene expression in carp mitochondria.This work was supported by proyect RS-82-21 from the Universidad Austral de Chile and Grant No 1116 from Fondo Nacional de Desarrollo Cientifico y Tecnologico  相似文献   

15.
Analysis of a 120-Kilobase Mitochondrial Chromosome in Maize   总被引:4,自引:2,他引:2       下载免费PDF全文
A. A. Levy  C. P. Andre    V. Walbot 《Genetics》1991,128(2):417-424
The organization of the mitochondrial genome in plants is not well understood. In maize mitochondrial DNA (mtDNA) several subgenomic circular molecules as well as an abundant fraction of linear molecules have been seen by electron microscopy. It has been hypothesized that the circular molecules are the genetic entities of the mitochondrial genome while the linear molecules correspond to randomly sheared mtDNA. A model has been proposed that explains the mechanism of generation of subgenomic circles (of a predictable size) by homologous recombination between pairs of large direct repeats found on a large (approximately 570 kb for the fertile (N) cytoplasm) master circle. So far the physical entities of the mitochondrial genome, as they exist in vivo, and the genes they carry, have not been identified. For this purpose, we used two gel systems (pulsed field gel electrophoresis and Eckhardt gels) designed to resolve large DNA. Large DNA was prepared from the Black Mexican Sweet (BMS) cultivar. We resolved several size classes of mtDNA circles and designate these as chromosomes. A 120 kb chromosome was mapped in detail. It is shown to contain the three ribosomal genes (rrn26, rrn18 and rrn5) plus two genes encoding subunits of cytochrome oxidase (Cox1 and Cox3); it appears to be colinear with the 570-kb master circle map of another fertile cytoplasm (B37N) except at the "breakpoints" required to form the 120-kb circle. The presence of the 120-kb chromosome could not have been predicted by homologous recombination through any of the known repetitive sequences nor is it a universal feature of normal maize mitochondria. It is present in mitochondria of BMS suspension cultures and seedlings, but is not detectable in seedlings of B37N. No master genome was detected in BMS.  相似文献   

16.
We have sequenced and characterized the complete mitochondrial genome of the sea slug, Aplysia californica, an important model organism in experimental biology and a representative of Anaspidea (Opisthobranchia, Gastropoda). The mitochondrial genome of Aplysia is in the small end of the observed sizes of animal mitochondrial genomes (14,117 bp, NCBI Accession No. NC_005827). The Aplysia genome, like most other mitochondrial genomes, encodes genes for 2 ribosomal subunit RNAs (small and large rRNAs), 22 tRNAs, and 13 protein subunits (cytochrome c oxidase subunits 1-3, cytochrome b apoenzyme, ATP synthase subunits 6 and 8, and NADH dehydrogenase subunits 1-6 and 4L). The gene order is virtually identical between opisthobranchs and pulmonates, with the majority of differences arising from tRNA translocations. In contrast, the gene order from representatives of basal gastropods and other molluscan classes is significantly different from opisthobranchs and pulmonates. The Aplysia genome was compared to all other published molluscan mitochondrial genomes and phylogenetic analyses were carried out using a concatenated protein alignment. Phylogenetic analyses using maximum likelihood based analyses of the well aligned regions of the protein sequences support both monophyly of Euthyneura (a group including both the pulmonates and opisthobranchs) and Opisthobranchia (as a more derived group). The Aplysia mitochondrial genome sequenced here will serve as an important platform in both comparative and neurobiological studies using this model organism.  相似文献   

17.
Summary We have cloned and sequenced over 9 kb of the mitochondrial genome from the sea starPisaster ochraceus. Within a continuous 8.0-kb fragment are located the genes for NADH dehydrogenase subunits 1, 2, 3, and 4L (ND1, ND2, ND3, and ND4L), cytochrome oxidase subunits I, II, and III (COI, COII, and COIII), and adenosine triphosphatase subunits 6 and 8 (ATPase 6 and ATPase 8). This large fragment also contains a cluster of 13 tRNA genes between ND1 and COI as well as the genes for isoleucine tRNA between ND1 and ND2, arginine tRNA between COI and ND4L, lysine tRNA between COII and ATPase 8, and the serine (UCN) tRNA between COIII and ND3. The genes for the other five tRNAs lie outside this fragment. The gene for phenylalanine tRNA is located between cytochrome b and the 12S ribosomal genes. The genes for tRNAglu and tRNAthr are 3 to the 12S ribosomal gene. The tRNAs for histidine and serine (AGN) are adjacent to each other and lie between ND4 and ND5. These data confirm the novel gene order in mitochondrial DNA (mtDNA) of sea stars and delineate additional distinctions between the sea star and other mtDNA molecules.  相似文献   

18.
The 18 extranuclear mutants of Neurospora crassa, without exception, have abnormal mitochondrial respiratory systems. On the basis of genetic, phenotypic and physiological criteria, these mutants are divided into four groups: 1) the cytochrome aa3 and b deficient "poky" variants that are defective in mitochondrial ribosomes assembly, 2) the cytochrome aa3 deficient mutants, [mi-3] and [exn-5], that appear to have genetic lesions affecting a component of a regulatory system controlling cytochrome aa3 synthesis, 3) the cytochrome aa3 and b deficient "stopper" mutants with physiological lesions that probably affect mitochondrial protein synthesis, and 4) cni-3, a mutant that is constitutive for an inducible mitochondrial cyanide-insensitive oxidase in spite of having a normal cytochrome mediated electron-transport system. It is proposed that the mitochondrial genophore not only codes for cellular components that are essential for the formation of the mitochondrial protein synthesizing apparatus, but also for components of a regulatory system that coordinates the expression of nuclear and mitochondrial genes during the biogenesis of the mitochondrial electorn-transport system.  相似文献   

19.
20.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号