首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of municipal solid waste (MSW) under mesophilic conditions can be enhanced by exchanging leachate between fresh waste and stabilised waste. The optimum point in time when leachate from an anaerobically digesting waste bed can be used to initiate degradation of another waste bed might occur when the leachate of the digesting waste bed is highly active with cellulolytic and methanogenic bacteria. In this study, the cellulolytic activity of the leachate was measured using the cellulose-azure assay. As products of hydrolysis are soluble compounds, the rate of generation of these compounds was estimated based on a soluble chemical oxygen demand (SCOD) balance around the fresh waste bed. It was found that once the readily soluble material present in MSW was washed out there was very little generation of SCOD without the production of methane, indicating that flushing leachate from a stabilised waste bed resulted in a balanced inoculation of the fresh waste bed. With the onset of sustained methanogenesis, the rate of SCOD generation equalled the SCOD released from the digester as methane. The experimental findings also showed that cellulolytic activities of the leachate samples closely followed the trend of SCOD generation.  相似文献   

2.
A hybrid anaerobic solid-liquid bioreactor for food waste digestion   总被引:5,自引:0,他引:5  
A hybrid anaerobic solid-liquid (HASL) bioreactor is an enhanced two-phase anaerobic system, that consists of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic reactor. Food waste digestion in HASL bioreactors with pre-acidification and HASL operation stages was investigated in two separate runs. After 8 days of pre-acidification in Run A and 4 days in Run B, total volatile fatty acid (TVFA) and chemical oxygen demand (COD) concentrations in the leachates of both acidification reactors were similar. During HASL operation stage, TVFA and COD removal in the methanogenic phase were 77–100% and 75–95%, respectively. Some 99% of the total methane generated was from the methanogenic phase with a content of 68–70% methane. At the end of operation, about 59–60% of the added volatile solids (VS) were removed with a methane yield of 0.25 l g–1 VS.  相似文献   

3.
Four pretreatments to hydrolyse and/or reduce the size of fat particles in slaughterhouse wastewater (SHW) were tested: sodium hydroxide and three lipases of plant, bacterial and animal (pancreatic) origin. Hydrolysing agents and SHW containing between 2.5 and 3 g/l of fat particles were mixed at room temperature for 4 h. Additions of 5-400 meq NaOH/l did not increase soluble COD (SCOD) in SHW, but the average particle size was reduced to 73% +/- 7% of the initial average particle size (D(in)) at NaOH concentrations ranging from 150 to 300 meq/l. Pretreatment with pancreatic lipase PL-250 reduced the average particle size to a maximum of 60% +/- 3% of D(in). As D(in) was decreased from 359 to 68 microns, the enzyme concentration required to obtain the maximum particle size reduction increased from 200 to 1000 mg/l. A 4-h pretreatment with PL-250 also increased the free long-chain fatty acid (LCFA) concentration to a maximum of 15.5 mg/l, indicating some solubilization of the pork fat particles in SHW. SCOD was not significantly increased by the pretreatment, but SCOD was not found to be a good indicator of enzymatic lipolysis because of enzyme adsorption on the fat particle surface. Pancreatic lipase appeared more efficient with beef fat than pork fat, possibly because beef fat contains less polyunsaturated fatty acids than pork fat. The bacterial lipase LG-1000 was also efficient in reducing average fat particle size, but high doses (> 1000 mg/l) were required to obtain a significant reduction after 4 h of pretreatment. SCOD was not increased by pretreatment with LG-1000. No particle size reduction or changes in SCOD were noted after 4 h of pretreatment with the plant lipase EcoSystem Plus. It was concluded that PL-250 was the best pretreatment to hydrolyse fat particles in SHW. However, its impact on the efficiency of a downstream anaerobic digestion process remains to be tested.  相似文献   

4.
Korean food wastes were anaerobically digested to produce volatile fatty acids (VFA) that can be used as a carbon source in biological nutrient removal in a sequential batch reactor (SBR). Acetate, propionate and butyrate were produced at a yield of 379-400 g VFA/kg VS0 (initial volatile solids). The ratio of SCOD (Soluble Chemical Oxygen Demand) of VFA to ammonia nitrogen (N) was in the range of 36.2-36.5 and the ratio of SCOD to phosphorus was between 151 and 162. The removal rate of nitrogen and phosphorus improved from 44% and 37% to 92% and 73%, respectively when the VFA were added to the influent of the Taejon municipal wastewater plant. The concentration of nitrogen and phosphorus were maintained below 3 mg/l and 1 mg/l, respectively. The N- and P-content of the food waste was low enough not to influence the final N- and P-concentrations of the wastewater.  相似文献   

5.
The aim of this work was to study the effect of ultra sound treatment on the solid content of sludge and biological activity, and the increase in the soluble chemical oxygen demand (SCOD), proteins and nucleic acids concentrations during sonication. The results showed that sonication effectively degraded and inactivated the sludge. The sludge disintegration and cell lysis occurred continuously while sludge inactivation mainly occurred in the second stage (10-30 min) during sonication. The SCOD, supernatant proteins and nucleic acids concentrations, and sludge mass reduction and inactivation degrees increased with the sonication time and power density increases. Higher energy ultrasound was more efficient than lower energy ultrasound for the sludge treatment.  相似文献   

6.
Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.  相似文献   

7.
Wet oxidation was investigated for its process performance on methane fermentation of newspaper waste. The mechanisms of solubilization of newspaper waste were investigated using the following criteria: destruction of total COD (TCOD), production of soluble COD (SCOD), production of volatile fatty acids, production of soluble carbohydrates, production of soluble lignin derivatives (SLD), production of furan (F) and destruction of lignin and cellulose. Wet oxidation was carried out at 170, 190, and 210 degrees C, with a retention time of 1 h. The highest removal efficiencies of TCOD and cellulose were achieved at 210 degrees C, approximately 40% and 69% were destroyed, respectively. On the other hand, highest lignin removal efficiency was achieved at 190 degrees C in which approximately 65% was removed. Batch methane fermentation tests were performed in 2-l glass bottles filled with the wet oxidized newspaper samples. Methane fermentation of newspaper pretreated at 190 degrees C gave the highest CH(4) conversion efficiency (59% of the initial TCOD was recovered as CH(4) gas). Anaerobic cellulose removals varied from 74% to 88%.  相似文献   

8.
【目的】利用海水养殖场有机废弃物厌氧发酵产氢,可在减少有机污染物的同时获取氢气。【方法】以海水养殖场有机废弃物为底物,比较嗜热酶(S-TE)、酸、碱、灭菌、微波不同预处理方法对厌氧发酵产氢效果的影响,并对发酵过程中底物性质变化[SCOD、可溶性蛋白质、可溶性糖、pH、VFAs(挥发性脂肪酸)和乙醇]进行探讨。【结果】灭菌预处理产氢效果最好,产氢率为22.0 mL/g VSS,酸处理的效果最差,产氢率为7.6 mL/g VSS。可溶性糖大量消耗之后,氢气不再产生。接种S-TE预处理污泥的底物能更多地释放营养物质,并在整个发酵过程中保持较为稳定的pH值。发酵过程中产生的VFAs主要成分是乙酸,在发酵后期出现乙醇。【结论】灭菌预处理是海水养殖场有机废弃物厌氧发酵产氢的最佳预处理方法,可溶性糖为这一过程主要的营养来源。  相似文献   

9.
Summary A 400 L pilot-scale inverse fluidized-bed biofilm reactor(IFBBR) was used to treat synthetic wastewater. The removal efficiency of the soluble chemical oxygen demand(SCOD) was more than 90% at a hydraulic retention time(HRT) of 5 h. The IFBBR could be operated successfully for 5 months without any significant problems.  相似文献   

10.
This study tested the applicability of a submerged vacuum ultrafiltration membrane technology in combination with the biological treatment system to achieve dry-ditch criteria stipulated as follows: BOD5, TSS, NH3-N, and total phosphorous (TP) concentration not exceeding 10, 10, 1, and 0.5 mg/L respectively for the treatment of high strength food-processing wastewater. During the study, the biological system, operated at average hydraulic retention time of 5-6 days, achieved 95-96.5% BOD removal and 96-99% COD removal. The external membrane system ensured the achievability of the BOD and TSS criteria, with BOD and TSS concentrations in the permeate of 1-2 and 1-8 mg/L respectively. Nitrate, and nitrite concentrations increased during membrane filtration, while ammonia concentrations decreased. The most salient finding of this study is that, contrary to common belief, for industrial wastewaters, the filterability of the mixed liquor is influenced by the soluble organics, and may be low, thus necessitating operation of bioreactors at low mixed liquor solids. This study demonstrated that bioreactors operated at low SRTs and in combination with ultrafiltration can still achieve superior effluent quality that may meet reuse criteria at reasonable cost.  相似文献   

11.
A study of anaerobic digestion of piggery wastewater was carried out in a laboratory-scale sludge bed reactor as a secondary treatment. The effect of organic volumetric loading rates (BV) in the range of 1.0-8.1 g TCOD/ld on the process performance was evaluated. The best results were obtained at BV equal to or lower than 4 g TCOD/ld. At higher BV values, the removal efficiency of the process decreased suddenly. A linear relationship was found between the effluent SCOD and the TVFA/alkalinity ratio (P). A relationship was found among the different operational variables (BV , removal efficiency, effluent soluble COD, soluble COD removal rate (R), retention factor (phi), specific microbial growth rate (mu), methane production rate per volume of reactor and per volume of waste treated--QM and qM, respectively) and the corresponding regression equations were obtained. An increase of BV determined a decrease of removal efficiency, phi and qM and an increase of effluent soluble COD, mu, R and QM. The value of the maximum specific microbial growth rate (muM) determined through the equation that correlated BV and mu was found to be 0.19 d(-1). This value was of the same magnitude as those reported in other works of anaerobic digestion of piggery waste.  相似文献   

12.
The effect of propionate concentrations on biodegradation of human waste (night soil) was studied at 10 degrees C. Propionate was toxic for the biomethanation at all the pH tested (6.0, 7.0 and 8.0). The maximum reduction in biogas production in presence of 200 mM propionate was observed at pH 7.0 followed by 8.0. The methane content in biogas also followed a similar trend and at pH 7.0 an 11.5% decrease was observed. Propionate caused the reduction of methanogenic count by an approximately 2log value. Total volatile fatty acids increased with the increase in propionate concentration and particularly accumulation of propionate was observed. The results were also compared with the 30 degrees C fermentation.  相似文献   

13.
In this study, the behaviour, and leachate and gaseous emissions during the initial phases of landfilling mechanically (M) and mechanically-biologically (MB) treated municipal solid waste residuals in northern climatic conditions was compared using two landfill lysimeters (112 m3). The results demonstrate that the strong acid phase of M residuals degradation lasts at least 2 years, while in the MB residuals the acid phase lasts only a few months. The SCOD and NH4-N concentrations varied 20-100g/l and 600-1800 mg/l in M leachate and 1-4 g/l and 100-400mg/l in MB leachate, respectively. The leaching of SCOD was approximately 40-fold (24.2 and 0.6 kg/t TS) and leaching of NH4-N approximately 5-fold (356 and 60 g/t TS) from the M than MB residuals; thus the effect of biological stabilisation was more marked on the leaching of SCOD than of NH4-N. Moreover gas (methane, carbon dioxide and nitrous oxide) emissions were several-fold higher from the M than MB residuals.  相似文献   

14.
Treatment of wet corn-milling wastewater with filamentous fungi was investigated as a means of obtaining fungal biomass as an additional byproduct. Competitive bacterial growth is a common problem during this nonaseptic treatment process. Selective disinfection with ozone was evaluated for eliminating bacterial populations during fungal cultivation. Three laboratory-scale continuous flow aerated reactors were operated under nonaseptic conditions at 38 degrees C, hydraulic retention time of 8h and pH of 4. The bacterial population was reduced by one log with respect to the control when ozone was dosed at a concentration above 47+/-2mg/L. An ozone dosage of about 57mg/L was found to be most effective in improving both fungal biomass production and soluble chemical oxygen demand (SCOD) removal (up to 90%). Fungal biomass concentration increased from c. 1.45g/L (control) to c. 1.75g/L at a 57-mg/L ozone dosage. Higher and lower dosages of ozone resulted in poorer fungal growth and lower SCOD removal.  相似文献   

15.
The feasibility of sewage sludge co-digestion using intermediate waste generated inside a wastewater treatment plant, i.e. trapped grease waste from the dissolved air flotation unit, has been assessed in a continuous stirred lab reactor operating at 35 °C with a hydraulic retention time of 20 days. Three different periods of co-digestion were carried out as the grease waste dose was increased. When the grease waste addition was 23% of the volatile solids fed (organic loading rate 3.0 kgCOD m−3 d−1), an increase in methane yield of 138% was reported. Specific activity tests suggested that anaerobic biomass had adapted to the co-substrate. The adapted inoculum showed higher acetoclastic methanogenic and β-oxidation synthrophic acetogenic activities but lower hydrogenotrophic methanogenic activity. The results indicate that a slow increase in the grease waste dose could be a strategy that favours biomass acclimation to fat-rich co-substrate, increases long chain fatty acid degradation and reduces the latter’s inhibitory effect.  相似文献   

16.
Taking into account isotope 13C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope 13C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.  相似文献   

17.
Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultaneous electricity production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment efficiency was limited by wastewater conductivity. When a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was added to the wastewater, power densities reached 501 +/- 20 mW/m(2), with a coulombic efficiency of 16 +/- 2%. There was efficient removal of soluble organic matter, with 73 +/- 1% removed based on soluble chemical oxygen demand (SCOD) and only slightly greater total removal (76 +/- 4%) based on total COD (TCOD) over a 500-h batch cycle. Cellulose was nearly completely removed (96 +/- 1%) during treatment. Further increasing the conductivity (100 mM PBS) increased power to 672 +/- 27 mW/m(2). In contrast, only 144 +/- 7 mW/m(2) was produced using an unamended wastewater (0.8 mS/cm) with TCOD, SCOD, and cellulose removals of 29 +/- 1%, 51 +/- 2%, and 16 +/- 1% (350-h batch cycle). These results demonstrate limitations to treatment efficiencies with actual wastewaters caused by solution conductivity compared to laboratory experiments under more optimal conditions.  相似文献   

18.
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.  相似文献   

19.
Anaerobic microorganisms in municipal solid waste samples from laboratory-scale landfill reactors and a pilot-plant biogas digestor were investigated with the aim of assessing their ability to transform four commercially used phthalic acid esters (PAEs) and phthalic acid (PA). The PAEs studied were diethyl phthalate (DEP), butylbenzyl phthalate (BBP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). No biological transformation of DEHP could be detected in any of the experiments. Together with waste samples from the simulated landfilling conditions, the PAEs (except DEHP) were hydrolytically transformed to their corresponding monoesters. These accumulated as end products, and in most cases they were not further degraded. During incubation with waste from the biogas digestor, the PAEs (except DEHP) were completely degraded to methane and carbon dioxide. The influence of the landfill development phase on the transformations was investigated utilizing PA and DEP as model substances. We found that during both the intense and stable methanogenic (but not the acidogenic) phases, the microoganisms in the samples had the potential to transform PA. A shorter lag phase was observed for the PA transformation in the samples from the stable methanogenic phase as compared with earlier phases. This indicates an increased capacity to degrade PA during the aging phases of the municipal solid waste in landfills. No enhancement of the DEP transformation could be observed as conditions in the methanogenic landfill model changed over a year's time. The results indicate that microorganisms developing in a methanogenic landfill environment have a substantially lower potential to degrade PAEs compared with those developing in a biogas reactor.Abbreviations BBP butylbenzyl phthalate - DEHP bis(2-ethylhexyl) phthalate - CoA coenzyme A - DBP dibutyl phthalate - DEP diethyl phthalate - DS dry solids - MBeP monobenzyl phthalate - MBuP monobutyl phthalate - MEP monoethyl phthalate - MSW municipal solid waste - PA phthalic acid - PAE(s) phthalic acid ester(s) - VFA volatile fatty acids  相似文献   

20.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号