首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)–polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers.  相似文献   

2.
Biodegradable polycaprolactone and collagen nanofibers were produced by electrospinning, with fiber diameters of around 300-700nm and features similar to the extracellular matrix of natural tissue. Human coronary artery smooth muscle cells (SMCs) seeded on nanofibrous matrices tend to maintain normal phenotypic shape and growth tends to be guided by the nanofiber orientation. The SMC and nanofibrous matrix interaction was observed by SEM, MTS assay, trypan blue exclusion method and laser scanning confocal microscopy. The results showed that the proliferation and growth rate of SMCs were not different on polycaprolactone (PCL) nanofibrous matrices coated with collagen or tissue culture plates. PCL nanofibrous matrices coated with collagen showed that the SMCs migrated towards inside the nanofibrous matrices and formed smooth muscle tissue. This approach may be useful for engineering a variety of tissues in various structures and shapes, and also to demonstrate the importance of matching both the initial mechanical properties and degradation rate of nanofibrous matrices to the specific tissue engineering.  相似文献   

3.
Electrospun scaffolds hold promise for the regeneration of dense connective tissues, given their nanoscale topographies, provision of directional cues for infiltrating cells and versatile composition. Synthetic slow-degrading scaffolds provide long-term mechanical support and nanoscale instructional cues; however, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous constructs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but provide little mechanical support. To take advantage of the positive features of these constructs, we have developed a composite scaffold consisting in both a biomimetic fiber fraction (i.e., Type I collagen nanofibers) together with a traditional synthetic (i.e., poly-[ε-caprolactone], PCL) fiber fraction. We hypothesize that inclusion of biomimetic elements will improve initial cell adhesion and eventual scaffold infiltration, whereas the synthetic elements will provide controlled and long-term mechanical support. We have developed a method of forming and crosslinking collagen nanofibers by using the natural crosslinking agent genipin (GP). Further, we have formed composites from collagen and PCL and evaluated the long-term performance of these scaffolds when seeded with mesenchymal stem cells. Our results demonstrate that GP crosslinking is cytocompatible and generates stable nanofibrous type I collagen constructs. Composites with varying fractions of the biomimetic and synthetic fiber families are formed and retain their collagen fiber fractions during in vitro culture. However, at the maximum collagen fiber fractions (20%), cell ingress is limited compared with pure PCL scaffolds. These results provide a new foundation for the development and optimization of biomimetic/synthetic nanofibrous composites for in vivo tissue engineering.  相似文献   

4.
This research is aimed to develop cationic nanofibrous mats with improved cellular adhesion profiles and stability of three-dimensional fibrous structure as potential scaffolds for skin tissue engineering. Firstly, amino-remained chitosan-graft-poly (?-caprolactone) (CS-g-PCL) was synthesized with a facile one-step manner by grafting ?-caprolactone oligomers onto the hydroxyl groups of CS via ring-opening polymerization by using methanesulfonic acid as solvent and catalyst. And then, CS-g-PCL/PCL nanofibrous mats were obtained by electrospinning of CS-g-PCL/PCL mixed solution. Scanning electron microscopy (SEM) images showed that the morphologies and diameters of the nanofibers were mainly affected by the weight ratio of CS-g-PCL to PCL. The enrichment of amino groups on the nanofiber surface was confirmed by X-ray photoelectron spectroscopy (XPS). With the increase of CS-g-PCL in CS-g-PCL/PCL nanofiber, the content of amino groups on the nanofiber surface increased, which resulted in the increase of zeta-potential of nanofibers. Studies on cell-scaffold interaction were carried out by culturing mouse fibroblast cells (L929) on CS-g-PCL/PCL nanofibrous mats with various contents of CS-g-PCL by assessing the growth, proliferation and morphologies of cells. The results of MTS assay and SEM observation showed that CS-g-PCL/PCL (2/8) mats with a moderate surface zeta-potential (ζ=3mV) were the best in promoting the cell attachment and proliferation. Toluidine blue staining further confirmed that L929 cells grew well and exhibited a normal morphology on the CS-g-PCL/PCL (2/8) mats. These results suggested the potential utilization of CS-g-PCL/PCL (2/8) nanofibrous mats for skin tissue engineering.  相似文献   

5.
In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.  相似文献   

6.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

7.
Magnetic nanofibrous scaffolds of poly(caprolactone) (PCL) incorporating magnetic nanoparticles (MNP) were produced, and their effects on physico-chemical, mechanical and biological properties were extensively addressed to find efficacy for bone regeneration purpose. MNPs 12 nm in diameter were citrated and evenly distributed in PCL solutions up to 20% and then were electrospun into nonwoven nanofibrous webs. Incorporation of MNPs greatly improved the hydrophilicity of the nanofibers. Tensile mechanical properties of the nanofibers (tensile strength, yield strength, elastic modulus and elongation) were significantly enhanced with the addition of MNPs up to 15%. In particular, the tensile strength increase was as high as ∼25 MPa at 15% MNPs vs. ∼10 MPa in pure PCL. PCL-MNP nanofibers exhibited magnetic behaviors, with a high saturation point and hysteresis loop area, which increased gradually with MNP content. The incorporation of MNPs substantially increased the degradation of the nanofibers, with a weight loss of ∼20% in pure PCL, ∼45% in 10% MNPs and ∼60% in 20% MNPs. Apatite forming ability of the nanofibers tested in vitro in simulated body fluid confirmed the substantial improvement gained by the addition of MNPs. Osteoblastic cells favored the MNPs-incorporated nanofibers with significantly improved initial cell adhesion and subsequent penetration through the nanofibers, compared to pure PCL. Alkaline phosphatase activity and expression of genes associated with bone (collagen I, osteopontin and bone sialoprotein) were significantly up-regulated in cells cultured on PCL-MNP nanofibers than those on pure PCL. PCL-MNP nanofibers subcutaneously implanted in rats exhibited minimal adverse tissue reactions, while inducing substantial neoblood vessel formation, which however, greatly limited in pure PCL. In vivo study in radial segmental defects also signified the bone regeneration ability of the PCL-MNP nanofibrous scaffolds. The magnetic, bone-bioactive, mechanical, cellular and tissue attributes of MNP-incorporated PCL nanofibers make them promising candidate scaffolds for bone regeneration.  相似文献   

8.
One of the key tenets of tissue engineering is to develop scaffold materials with favorable biodegradability, surface properties, outstanding mechanical strength and controlled drug release property. In this study, we generated core-sheath nanofibers composed of poly (?-caprolactone) (PCL) and silk fibroin (SF) blends via emulsion electrospinning. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle and tensile measurements. An in vitro FITC release study was conducted to evaluate sustained release potential of the core-sheath structured nanofibers. We found that the conformation of SF contained in PCL/SF composite nanofibers was transformed from random coil to β-sheet when treated with methanol, leading to improved crystallinity and tensile strength of nanofibrous scaffolds. The hydrophobicity and diameter of nanofibers decreased when we increased the content of SF in PCL/SF composite nanofibers. Furthermore, we evaluated the potential of fabricated PCL/SF composite nanofibers as scaffold in vitro. The results confirmed that fabricated PCL/SF scaffolds improved cell attachment and proliferation. Our results demonstrated the feasibility to generate core-sheath nanofibers composed of PCL and SF using a single-nozzle technique. The produced nanofibrous scaffolds with sustained drug release have potential application in tissue engineering.  相似文献   

9.
Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM's major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure.  相似文献   

10.
Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.  相似文献   

11.
Transplantation of stem cells using biodegradable and biocompatible nanofibrous scaffolds is a promising therapeutic approach for treating inherited retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. In this study, conjunctiva mesenchymal stem cells (CJMSCs) were seeded onto poly-l-lactic acid (PLLA) nanofibrous scaffolds and were induced to differentiate toward photoreceptor cell lineages. Furthermore, the effects of orientation of scaffold on photoreceptor differentiation were examined. Scanning electron microscopy (SEM) imaging, quantitative real time RT-PCR (qPCR) and immunocytochemistry were used to analyze differentiated cells and their expression of photoreceptor-specific genes. Our observations demonstrated the differentiation of CJMSCs to photoreceptor cells on nanofibrous scaffolds and suggested their potential application in retinal regeneration. SEM imaging showed that CJMSCs were spindle shaped and well oriented on the aligned nanofiber scaffolds. The expression of rod photoreceptor-specific genes was significantly higher in CJMSCs differentiated on randomly-oriented nanofibers compared to those on aligned nanofibers. According to our results we may conclude that the nanofibrous PLLA scaffold reported herein could be used as a potential cell carrier for retinal tissue engineering and a combination of electrospun nanofiber scaffolds and MSC-derived conjunctiva stromal cells may have potential application in retinal regenerative therapy.  相似文献   

12.
Yeo M  Lee H  Kim G 《Biomacromolecules》2011,12(2):502-510
β-Tricalcium phosphate (β-TCP) and collagen have been widely used to regenerate various hard tissues, but although Bioceramics and collagen have various biological advantages with respect to cellular activity, their usage has been limited due to β-TCP's inherent brittleness and low mechanical properties, along with the low shape-ability of the three-dimensional collagen. To overcome these material deficiencies, we fabricated a new hierarchical scaffold that consisted of a melt-plotted polycaprolactone (PCL)/β-TCP composite and embedded collagen nanofibers. The fabrication process was combined with general melt-plotting methods and electrospinning. To evaluate the capability of this hierarchical scaffold to act as a biomaterial for bone tissue regeneration, physical and biological assessments were performed. Scanning electron microscope (SEM) micrographs of the fabricated scaffolds indicated that the β-TCP particles were uniformly embedded in PCL struts and that electrospun collagen nanofibers (diameter = 160 nm) were well layered between the composite struts. By accommodating the β-TCP and collagen nanofibers, the hierarchical composite scaffolds showed dramatic water-absorption ability (100% increase), increased hydrophilic properties (20%), and good mechanical properties similar to PCL/β-TCP composite. MTT assay and SEM images of cell-seeded scaffolds showed that the initial attachment of osteoblast-like cells (MG63) in the hierarchical scaffold was 2.2 times higher than that on the PCL/β-TCP composite scaffold. Additionally, the proliferation rate of the cells was about two times higher than that of the composite scaffold after 7 days of cell culture. Based on these results, we conclude that the collagen nanofibers and β-TCP particles in the scaffold provide good synergistic effects for cell activity.  相似文献   

13.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

14.
Tissue engineering techniques using a combination of polymeric scaffolds and cells represent a promising approach for nerve regeneration. We fabricated electrospun scaffolds by blending of Poly (3-hydroxybutyrate) (PHB) and Poly (3-hydroxy butyrate-co-3- hydroxyvalerate) (PHBV) in different compositions in order to investigate their potential for the regeneration of the myelinic membrane. The thermal properties of the nanofibrous blends was analyzed by differential scanning calorimetry (DSC), which indicated that the melting and glass temperatures, and crystallization degree of the blends decreased as the PHBV weight ratio increased. Raman spectroscopy also revealed that the full width at half height of the band centered at 1725 cm−1 can be used to estimate the crystalline degree of the electrospun meshes. Random and aligned nanofibrous scaffolds were also fabricated by electrospinning of PHB and PHBV with or without type I collagen. The influence of blend composition, fiber alignment and collagen incorporation on Schwann cell (SCs) organization and function was investigated. SCs attached and proliferated over all scaffolds formulations up to 14 days. SCs grown on aligned PHB/PHBV/collagen fibers exhibited a bipolar morphology that oriented along the fiber direction, while SCs grown on the randomly oriented fibers had a multipolar morphology. Incorporation of collagen within nanofibers increased SCs proliferation on day 14, GDNF gene expression on day 7 and NGF secretion on day 6. The results of this study demonstrate that aligned PHB/PHBV electrospun nanofibers could find potential use as scaffolds for nerve tissue engineering applications and that the presence of type I collagen in the nanofibers improves cell differentiation.  相似文献   

15.
The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.  相似文献   

16.
Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three-dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber-based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.  相似文献   

17.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   

18.
To fabricate a biomimetic nanostructured bicomponent scaffolds, two types of chitin/silk fibroin (SF) nanofibrous scaffolds (blend scaffolds and hybrid scaffolds) were prepared by electrospinning or simultaneous electrospinning of chitin/SF solutions. The chitin/SF bicomponent scaffolds were after-treated with water vapor, and their nanofibrous structures were almost maintained. From the cytocompatibility and cell behavior on the chitin/SF blend or hybrid nanofibrous scaffolds, the hybrid matrix with 25% chitin and 75% SF as well as the chitin/SF blend nanofibers could be a potential candidate for tissue engineering scaffolds.  相似文献   

19.
A novel fibrous membrane of carboxymethyl chitin (CMC)/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits on the nanofibrous surfaces. Cytotoxicity of the nanofibrous scaffold was evaluated using human mesenchymal stem cells (hMSCs) by the MTT assays. The cell viability was not altered when these nanofibrous scaffolds were pre-washed with phosphate buffer containing saline (PBS) before seeding the cells. The SEM images also revealed that cells were able to attach and spread in the nanofibrous scaffolds. Thus our results indicate that the nanofibrous CMC/PVA scaffold supports cell adhesion/attachment and proliferation and hence this scaffold will be a promising candidate for tissue engineering applications.  相似文献   

20.
An ideal biomaterial in regenerative medicine should be able to regulate the stem cell proliferation without the loss of its pluripotency. Chrysin (Chr) is a naturally occurring flavone with a wide spectrum of biological functions including anti-inflammatory and anti-oxidant properties. The present study describes the influence of Chr-loaded nanofibrous mats on the regulation of proliferation and stemness preservation of adipose-derived stem cells (ADSCs). For this purpose, Chr-loaded poly (ε-caprolactone)/poly (ethylene glycol) (PCL/PEG) nanofibrous mats were produced via electrospinning process and the successful fabrication of these bioactive mats was confirmed by field emission scanning electron microscopy (FE-SEM) and fourier transform infrared spectroscopy. ADSCs were seeded on the nanofibers and their morphology, viability, and stemness expression were analyzed using FE-SEM, MTT, and qPCR assays after 2 weeks of incubation, respectively. The results display that ADSCs exhibit better adhesion and significantly increased viability on the Chr-loaded PCL/PEG nanofibrous mats in relative to the PCL/PEG nanofibers and tissue culture polystyrene. The greater viability of ADSCs on Chr based nanofibers was further confirmed by higher expression levels of stemness markers Sox-2, Nanog, Oct-4, and Rex-1. These findings demonstrate that Chr-loaded PCL/PEG electrospun nanofibrous mats can be applied to improve cell adhesion and proliferation while concurrently preserving the stemness of ADSCs, thus representing a hopeful potential for application in stem cell therapy strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号