首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

2.
3.
磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/Akt)信号通路在细胞生长与存活中起着关键作用,PI3K/Akt通路的过度激活在多种肿瘤中常见。Akt激酶本身以及Akt激酶上游调节分子,例如PTEN和PI3K,在超过50%的人类肿瘤中均有异常变化。因此Akt成为肿瘤预防和肿瘤靶向治疗的热点之一。许多小分子化合物通过不同机制抑制Akt活性,根据小分子抑制剂与激酶的结合部位和化学结构不同,主要分为ATP竞争性抑制剂、Akt变构抑制剂和磷脂酰肌醇类似物抑制剂。本文综述了PI3K/Akt通路与肿瘤的关系和Akt抑制剂的研究现状,为新型抗癌药物的设计研究提供参考。  相似文献   

4.
5.
6.
7.
Unravelling the activation mechanisms of protein kinase B/Akt   总被引:17,自引:0,他引:17  
Scheid MP  Woodgett JR 《FEBS letters》2003,546(1):108-112
Over the past decade, protein kinase B (PKB, also termed Akt) has emerged as an important signaling mediator between extracellular cues and modulation of gene expression, metabolism, and cell survival. The enzyme is tightly controlled and consequences of its deregulation include loss of growth control and oncogenesis. Recent work has better characterized the mechanism of PKB activation, including upstream regulators and secondary binding partners. This minireview refreshes some old concepts with new twists and highlights current outstanding questions.  相似文献   

8.
Heregulin regulation of Akt/protein kinase B in breast cancer cells.   总被引:3,自引:0,他引:3  
In the present studies, we demonstrate that heregulin is a potent and rapid activator of the serine/threonine kinase called Akt in the MCF-7 breast cancer cell line but not in 3 other breast cancer cell lines (T47D, HBL-100, and MDA-231). The extent of activation of Akt in the 4 cell lines correlated with the ability of heregulin to activate phosphatidylinositol 3-kinase and inhibition of the kinase blocked Akt activation. A monoclonal antibody to HER2 inhibited the ability of heregulin to activate Akt in the MCF-7 cells. BT474, a breast cancer cell line which overexpresses HER2, had high basal Akt enzymatic activity. This high basal activity was lowered when cells were pre-incubated with an anti-HER2 monoclonal antibody which is used to treat breast cancer patients. Our results indicate that heregulin is a potent activator of Akt and that overexpression of HER2 in breast cancers could also lead to activation of Akt.  相似文献   

9.
Ganglioside GT1b inhibits keratinocyte attachment to and migration on a fibronectin matrix by binding to alpha(5)beta(1) and preventing alpha(5)beta(1) interaction with fibronectin. The role of gangliosides in triggering keratinocyte apoptosis, however, is unknown. Addition of GT1b to keratinocyte-derived SCC12 cells, grown in serum-free medium but exposed to fibronectin, suppressed Bad phosphorylation, activated caspase-9, and inhibited cyclin D and E expression, resulting in cell cycle arrest at G(1) phase and initiation of apoptosis. The mechanism of GT1b activation of caspase-9 involved inhibition of beta(1) integrin serine/threonine phosphorylation and decreased phosphorylation of both integrin-linked kinase and protein kinase B/Akt at its Ser-473 site, leading to cytochrome c release from mitochondria. Consistently, blockade of GT1b function with anti-GT1b antibody specifically activated the Ser-473 site of Akt, markedly suppressing apoptosis. The ganglioside-induced inhibition of Akt phosphorylation was GT1b-specific and was not observed when cells were treated with other keratinocyte gangliosides, including GD3. These studies suggest that the modulation of keratinocyte cell cycle and survival by GT1b is mediated by its direct interaction with alpha(5)beta(1) and resultant inhibition of the integrin/integrin-linked kinase/protein kinase B/Akt signaling pathway.  相似文献   

10.
The protein serine-threonine kinase Akt mediates cell survival signaling initiated by various growth-promoting factors such as insulin. Here we report that SEK1 is a target of Akt in intact cells. Insulin inhibited the anisomycin-induced stimulation of both endogenous SEK1 and its substrate c-Jun N-terminal kinase (JNK), but not that of the upstream kinase MEKK1, in 293T cells. The inhibitory action of insulin on SEK1 or JNK1 activation was prevented by the phosphatidylinositol 3-kinase inhibitor LY294002. Expression of a constitutively active form of Akt also inhibited both SEK1 and JNK1 activation, but not that of MEKK1, in transfected 293T cells. Co-immunoprecipitation analysis revealed that endogenous Akt physically interacted with endogenous SEK1 in cells and that this interaction was promoted by insulin. In vitro and in vivo (32)P labeling indicated that Akt phosphorylated SEK1 on serine 78. The SEK1 mutant SEK1(S78A) was resistant to Akt-induced inhibition. Finally, activated Akt inhibited SEK1-mediated apoptosis, and this effect of Akt was prevented by overexpression of SEK(S78A). Taken together, these results suggest that Akt suppresses stress-activated signaling by targeting SEK1.  相似文献   

11.
While positive regulation of c-Akt (also known as protein kinase B) by receptor tyrosine kinases is well documented, compounds acting through G protein-coupled receptors can also activate Akt and its downstream targets. We therefore explored the role of G protein subunits in the regulation of Akt in cultured mammalian cells. In HEK-293 and COS-7 cells transiently transfected with beta(2)-adrenergic or m2 muscarinic receptors, respectively, treatment with agonist-induced phosphorylation of Akt at serine 473 as evidenced by phosphoserine-specific immunoblots. This effect was blocked by the phosphatidylinositol-3-OH kinase inhibitor LY294002 and wild-type Galpha(i1), and was not duplicated by co-transfection of the constitutively active Galpha(s)-Q227L or Galpha(i)-Q204L mutant. Co-transfection of Gbeta(1), Gbeta(2) but not Gbeta(5) together with Ggamma(2) activated the kinase when assayed in vitro following immunoprecipitation of the epitope-tagged enzyme. In contrast, constitutively activated G protein subunits representing the four Galpha subfamilies were found unable to activate Akt in either cell line. The latter results are in disagreement with a report by Murga et al. (Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A., and Gutkind, J. S. (1998) J. Biol. Chem. 273, 19080-19085) that described activation of Akt in response to mutationally activated Galpha(q) and Galpha(i) transfection in COS cells. To the contrary, in our experiments Galpha(q)-Q209L inhibited Akt activation resulting from betagamma or mutationally activated H-Ras co-transfection in these cells. In HEK-293 cells Galpha(q)-Q209L transfection inhibited insulin-like growth factor-1 activation of epitope-tagged Akt. In m1 muscarinic receptor transfected HEK-293 cells, carbachol inhibited insulin-like growth factor-1 stimulated phosphorylation at Ser(473) of endogenous Akt in an atropine-reversible fashion. We conclude that G proteins can regulate Akt by two distinct and potentially opposing mechanisms: activation by Gbetagamma heterodimers in a phosphatidylinositol-3-OH kinase-dependent fashion, and inhibition mediated by Galpha(q). This work identifies Akt as a novel point of convergence between disparate signaling pathways.  相似文献   

12.
Inducible nitric-oxide synthase (iNOS) has been implicated in many human diseases including insulin resistance. However, how iNOS causes or exacerbates insulin resistance remains largely unknown. Protein S-nitrosylation is now recognized as a prototype of a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe the mechanism of inactivation of Akt/protein kinase B (PKB) in NO donor-treated cells and diabetic (db/db) mice. NO donors induced S-nitrosylation and inactivation of Akt/PKB in vitro and in intact cells. The inhibitory effects of NO donor were independent of phosphatidylinositol 3-kinase and cGMP. In contrast, the concomitant presence of oxidative stress accelerated S-nitrosylation and inactivation of Akt/PKB. In vitro denitrosylation with reducing agent reactivated recombinant and cellular Akt/PKB from NO donor-treated cells. Mutated Akt1/PKBalpha (C224S), in which cysteine 224 was substituted by serine, was resistant to NO donor-induced S-nitrosylation and inactivation, indicating that cysteine 224 is a major S-nitrosylation acceptor site. In addition, S-nitrosylation of Akt/PKB was increased in skeletal muscle of diabetic (db/db) mice compared with wild-type mice. These data suggest that S-nitrosylation-mediated inactivation may contribute to the pathogenesis of iNOS- and/or oxidative stress-involved insulin resistance.  相似文献   

13.
PKB/Akt:一个具有多种功能的蛋白激酶   总被引:4,自引:0,他引:4  
姜华  张学军 《生命科学》2004,16(3):148-153,164
蛋白激酶B(protein kinaseB,PKB)是细胞信号传导过程中的一个重要的中间体。在过去lO多年的研究中,发现它不仅参与调节细胞糖代谢、细胞增殖、细胞凋亡,而且与糖尿病和癌症的发生也有关。目前PKB的相关调控机制还未得到完全阐明。在此,作者谨就PKB的一些研究进展作一介绍。  相似文献   

14.
15.
The Akt/protein kinase B is critical regulator of cellular homeostasis with diminished Akt activity being associated with dysregulation of cellular metabolism and cell death while Akt over‐activation has been linked to inappropriate cell growth and proliferation. Although the regulation of Akt function has been well characterized in vitro, much less is known regarding the function of Akt in vivo. Here we examine how skeletal muscle Akt expression and enzymatic activity are controlled, the role of Akt in the regulation of skeletal muscle contraction, stress response glucose utilization, and protein metabolism, and the potential participation of this important molecule in skeletal muscle atrophy, aging, and cancer. J. Cell. Physiol. 226: 29–36, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Akt/protein kinase B promotes organ growth in transgenic mice   总被引:24,自引:0,他引:24       下载免费PDF全文
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.  相似文献   

17.
Thr-211 is one of three different amino acid residues in the kinase domain of protein kinase B/Akt as compared to protein kinase A (PKA), a closely related analog in the same AGC family. In an attempt to improve the potency and selectivity of our indazole-pyridine series of Akt inhibitors over PKA, efforts have focused on the incorporation of a chemical functionality to interact with the hydroxy group of Thr-211. Several substituents including an oxygen anion, amino, and nitro groups have been introduced at the C-6 position of the indazole scaffold, leading to a significant drop in Akt potency. Incorporation of a nitrogen atom into the phenyl ring at the same position (i.e., 9f) maintained the Akt activity and, in some cases, improved the selectivity over PKA. The structure-activity relationships of the new pyridine-pyrazolopyridine series of Akt inhibitors and their structural features when bound to PKA are also discussed.  相似文献   

18.
A series of heteroaryl-pyridine containing inhibitors of Akt are reported. The synthesis and structure-activity relationships are discussed, leading to the discovery of a indazole-pyridine analogue (K(i)=0.16 nM). These compounds bind in the ATP binding site, are potent, ATP competitive, and reversible inhibitors of Akt activity. No selectivity amongst the Akt isoforms is observed for this analogue, but there is good selectivity against an panel of other kinases. It is least selective for other members of the AGC family of kinases but is nonetheless 40-fold selective for Akt over PKA. The compound shows cellular activity and significantly slows tumor growth in vivo.  相似文献   

19.
20.
We identified a novel human AMP-activated protein kinase (AMPK) family member, designated ARK5, encoding 661 amino acids with an estimated molecular mass of 74 kDa. The putative amino acid sequence reveals 47, 45.8, 42.4, and 55% homology to AMPK-alpha1, AMPK-alpha2, MELK, and SNARK, respectively, suggesting that it is a new member of the AMPK family. It has a putative Akt phosphorylation motif at amino acids 595-600, and Ser(600) was found to be phosphorylated by active Akt resulting in the activation of kinase activity toward the SAMS peptide, a consensus AMPK substrate. During nutrient starvation, ARK5 supported the survival of cells in an Akt-dependent manner. In addition, we also demonstrated that ARK5, when activated by Akt, phosphorylated the ATM protein that is mutated in the human genetic disorder ataxia-telangiectasia and also induced the phosphorylation of p53. On the basis of our current findings, we propose that a novel AMPK family member, ARK5, is the tumor cell survival factor activated by Akt and acts as an ATM kinase under the conditions of nutrient starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号