首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. Here we present a model for the assembly of the six human RNase PH-like exosome subunits into a hexameric ring structure. In part, this structure is on the basis of the evolutionarily related bacterial degradosome, the core of which consists of three copies of the PNPase protein, each containing two RNase PH domains. In our model three additional exosome subunits, which contain S1 RNA-binding domains, are positioned on the outer surface of this ring. Evidence for this model was obtained by the identification of protein-protein interactions between individual exosome subunits in a mammalian two-hybrid system. In addition, the results of co-immunoprecipitation assays indicate that at least two copies of hRrp4p and hRrp41p are associated with a single exosome, suggesting that at least two of these ring structures are present in this complex. Finally, the identification of a human gene encoding the putative human counterpart of the bacterial PNPase protein is described, which suggests that the exosome is not the eukaryotic equivalent of the bacterial degradosome, although they do share similar functional activities.  相似文献   

2.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   

3.
The conserved core of the exosome, the major eukaryotic 3' --> 5' exonuclease, contains nine subunits that form a ring similar to the phosphorolytic bacterial PNPase and archaeal exosome, as well as Dis3. Dis3 is homologous to bacterial RNase II, a hydrolytic enzyme. Previous studies have suggested that all subunits are active 3' --> 5' exoRNases. We show here that Dis3 is responsible for exosome core activity. The purified exosome core has a hydrolytic, processive and Mg(2+)-dependent activity with characteristics similar to those of recombinant Dis3. Moreover, a catalytically inactive Dis3 mutant has no exosome core activity in vitro and shows in vivo RNA degradation phenotypes similar to those resulting from exosome depletion. In contrast, mutations in Rrp41, the only subunit carrying a conserved phosphorolytic site, appear phenotypically not different from wild-type yeast. We observed that the yeast exosome ring mediates interactions with protein partners, providing an explanation for its essential function.  相似文献   

4.
The structure and function of polynucleotide phosphorylase (PNPase) and the exosome, as well as their associated RNA-helicases proteins, are described in the light of recent studies. The picture raised is of an evolutionarily conserved RNA-degradation machine which exonucleolytically degrades RNA from 3′ to 5′. In prokaryotes and in eukaryotic organelles, a trimeric complex of PNPase forms a circular doughnut-shaped structure, in which the phosphorolysis catalytic sites are buried inside the barrel-shaped complex, while the RNA binding domains create a pore where RNA enters, reminiscent of the protein degrading complex, the proteasome. In some archaea and in the eukaryotes, several different proteins form a similar circle-shaped complex, the exosome, that is responsible for 3′ to 5′ exonucleolytic degradation of RNA as part of the processing, quality control, and general RNA degradation process. Both PNPase in prokaryotes and the exosome in eukaryotes are found in association with protein complexes that notably include RNA helicase.  相似文献   

5.
Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel β-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.  相似文献   

6.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

7.
The exosome is a protein complex that is important in both degradation and 3'-processing of eukaryotic RNAs. We present the crystal structure of the Rrp40 exosome subunit from Saccharomyces cerevisiae at a resolution of 2.2 A. The structure comprises an S1 domain and an unusual KH (K homology) domain. Close packing of the S1 and KH domains is stabilized by a GxNG sequence, which is uniquely conserved in exosome KH domains. Nuclear magnetic resonance data reveal the presence of a manganese-binding site at the interface of the two domains. Isothermal titration calorimetry shows that Rrp40 and archaeal Rrp4 alone have very low intrinsic affinity for RNA. The affinity of an archaeal core exosome for RNA is significantly increased in the presence of the S1-KH subunit Rrp4, indicating that multiple subunits might contribute to cooperative binding of RNA substrates by the exosome.  相似文献   

8.
Tsanova B  van Hoof A 《EMBO reports》2010,11(12):900-901
The authors analyse the eukaryotic exosome structure, published in EMBO reports, in light of the known archaeal and prokaryotic exosomes, and discuss its striking flexibility and the conservation of the RNA channelling mechanism.EMBO Rep (2010) advance online publication. doi: 10.1038/embor.2010.164Almost all RNA molecules are processed by RNases to form mature RNAs. In addition, many RNAs are degraded, either because they are no longer needed or because they are aberrant. All of these functions—RNA processing, normal RNA degradation and RNA quality control—are carried out by the eukaryotic RNA exosome complex. In this issue of EMBO reports, the Lorentzen group provide structural insight into the eukaryotic exosome and the mechanism by which it degrades RNA from 3′ to 5′ (Malet et al, 2010).The crystal structures of overlapping parts of the eukaryotic exosome (Liu et al, 2006; Bonneau et al, 2009) and the related bacterial PNPase (Symmons et al, 2000) and archaeal exosome (Lorentzen et al, 2007) have been solved, and show that these RNA-degrading machines from the three domains of life have a similar structure (Fig 1). They are all composed of a ring of six RNase PH domains, one side of which has a cap that contains putative RNA-binding domains. Although this overall structure is conserved, the way that it is formed is not. Bacterial PNPase is a homotrimer of which each monomer contains two RNase PH domains, an S1 domain and a KH domain. The archaeal PH ring consists of three copies of two proteins and the cap is made of three copies of either one of two proteins. Finally, the eukaryotic exosome core is composed of nine proteins: six with one RNase PH domain each and three cap proteins.Open in a separate windowFigure 1Exosome structures. The bacterial PNPase (left), the archaeal exosome (middle) and eukaryotic core exosome (right) have a common overall structure. The top panels are schematic views from above, showing the cap proteins. The bottom panels show a view from the side, with one-third of the exosome cut away to reveal the RNA in the central channel.In PNPase and the archaeal exosome, substrates enter the PH ring from the cap-side. The putative RNA-binding domains of the cap are therefore probably important for controlling entry to the PH ring. In both archaea and bacteria, the active sites are on the inner side of the PH ring and thus the ribonucleic catalysis occurs inside the central channel. However, in humans and yeast each of the RNase PH domains have point mutations that make the exosome ring catalytically inactive (Dziembowski et al, 2007). Instead, catalysis is carried out by a tenth subunit—Rrp44/Dis3—which binds to the PH ring on the opposite side to the cap proteins (Bonneau et al, 2009; Wang et al, 2007). This organization made it unclear whether RNA also enters the central channel of the exosome in eukaryotes (Fig 1), or whether substrate RNAs directly access the catalytic subunit.Malet and colleagues now provide structural information that resolves this by reconstituting the ten-subunit yeast exosome and analysing its structure with electron microscopy, in the presence and absence of RNA. This analysis suggests that the RNase PH ring of the exosome is stable, but that the cap and catalytic subunits are more flexible than previously appreciated. It is the first structural evidence that in eukaryotes RNA is threaded through the central channel before being degraded by Rrp44.  相似文献   

9.
Exosomes emerge as central 3'-->5' RNA processing and degradation machineries in eukaryotes and archaea. We determined crystal structures of two 230 kDa nine subunit archaeal exosome isoforms. Both exosome isoforms contain a hexameric ring of RNase phosphorolytic (PH) domain subunits with a central chamber. Tungstate soaks identified three phosphorolytic active sites in this processing chamber. A trimer of Csl4 or Rrp4 subunits forms a multidomain macromolecular interaction surface on the RNase-PH domain ring with central S1 domains and peripheral KH and zinc-ribbon domains. Structural and mutational analyses suggest that the S1 domains and a subsequent neck in the RNase-PH domain ring form an RNA entry pore to the processing chamber that only allows access of unstructured RNA. This structural framework can mechanistically unify observed features of exosomes, including processive degradation of unstructured RNA, the requirement for regulatory factors to degrade structured RNA, and left-over tails in rRNA trimming.  相似文献   

10.
The exosome is a complex of eleven subunits in yeast, involved in RNA processing and degradation. Despite the extensive in vivo functional studies of the exosome, little information is yet available on the structure of the complex and on the RNase and RNA binding activities of the individual subunits. The current model for the exosome structure predicts the formation of a heterohexameric RNase PH ring, bound on one side by RNA binding subunits, and on the opposite side by hydrolytic RNase subunits. Here, we report protein-protein interactions within the exosome, confirming the predictions of constituents of the RNase PH ring, and show some possible interaction interfaces between the other subunits. We also show evidence that Rrp40p can bind RNA in vitro, as predicted by sequence analysis.  相似文献   

11.
RNA exosomes are large multisubunit assemblies involved in controlled RNA processing. The archaeal exosome possesses a heterohexameric processing chamber with three RNase-PH-like active sites, capped by Rrp4- or Csl4-type subunits containing RNA-binding domains. RNA degradation by RNA exosomes has not been studied in a quantitative manner because of the complex kinetics involved, and exosome features contributing to efficient RNA degradation remain unclear. Here we derive a quantitative kinetic model for degradation of a model substrate by the archaeal exosome. Markov Chain Monte Carlo methods for parameter estimation allow for the comparison of reaction kinetics between different exosome variants and substrates. We show that long substrates are degraded in a processive and short RNA in a more distributive manner and that the cap proteins influence degradation speed. Our results, supported by small angle X-ray scattering, suggest that the Rrp4-type cap efficiently recruits RNA but prevents fast RNA degradation of longer RNAs by molecular friction, likely by RNA contacts to its unique KH-domain. We also show that formation of the RNase-PH like ring with entrapped RNA is not required for high catalytic efficiency, suggesting that the exosome chamber evolved for controlled processivity, rather than for catalytic chemistry in RNA decay.  相似文献   

12.
The origin of polynucleotide phosphorylase domains   总被引:5,自引:0,他引:5  
In this report, we document the presence of polynucleotide phosphorylase (PNPase) in the animal eukaryotes. These proteins contain several domains, including 2 RNase PH domains (PNPase 1 and PNPase 2) which are closely related functionally and in sequence similarity to ribonuclease PH (RPH) protein. Phylogenetic analysis of the gene genealogy of these three domains suggests that PNPase was formed via a duplication event that also produced the RNase PH protein. Given the current distribution of these domains in the tree of life, these duplication events most likely occurred in the common ancestor of the three organismal superkingdoms, Archaea, Eukarya, and Bacteria. In particular, PNPase 2 and RPH are more closely related to each other than either one is to PNPase 1, suggesting a deeper differentiation of PNPase 1 in the common organismal ancestor. In addition, while PNPase 1 and PNPase 2 appear to have the same evolutionary signal as determined by the incongruence length difference (ILD) test, RPH appears to have an incongruent signal with both of the PNPase domains. This result suggests that RPH experienced different evolutionary divergence patterns than the PNPase domains, consistent with the linked nature of the two PNPase domains.  相似文献   

13.
The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into complexes that recover endogenous nuclear and cytoplasmic exosome subunits. Immunolocalization analyses demonstrate that subsets of both epitope-tagged and endogenous exosome subunits are enriched in discrete subcellular compartments. In particular, dRrp4, dRrp42, dRrp46, and dCsl4 are enriched in cytoplasmic foci. Although dRrp4 and dRrp42 sometimes colocalize with dCsl4, these subunits are predominantly found in distinct cytoplasmic compartments. Strikingly, dRrp44/dDis3 and dRrp41/dSki6 colocalize with the nuclear lamina and often exhibit a restricted and asymmetric distribution at the nuclear periphery. Taken together, these observations indicate that individual exosome subunits have distinct localizations in vivo. These different distribution patterns presumably reflect distinct exosome subunit subcomplexes with correspondingly specialized functions.  相似文献   

14.

Background

The exosome complex is an essential RNA 3′-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry.

Methodology/Principal Findings

Here we report an asymmetric 2.9 Å Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation.

Conclusion/Significance

This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.  相似文献   

15.
The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events, including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic degradation. In spinach chloroplasts, the latter two steps of polyadenylation and exonucleolytic degradation are performed by the same phosphorolytic and processive enzyme, polynucleotide phosphorylase (PNPase). An analysis of its amino acid sequence shows that the protein is composed of two core domains related to RNase PH, two RNA binding domains (KH and S1), and an alpha-helical domain. The amino acid sequence and domain structure is largely conserved between bacteria and organelles. To define the molecular mechanism that controls the two opposite activities of this protein in the chloroplast, the ribonuclease, polymerase, and RNA binding properties of each domain were analyzed. The first core domain, which was predicted to be inactive in the bacterial enzymes, was active in RNA degradation but not in polymerization. Surprisingly, the second core domain was found to be active in degrading polyadenylated RNA only, suggesting that nonpolyadenylated molecules can be degraded only if tails are added, apparently by the same protein. The poly(A) high-binding-affinity site was localized to the S1 domain. The complete spinach chloroplast PNPase, as well as versions containing the core domains, complemented the cold sensitivity of an Escherichia coli PNPase-less mutant. Phylogenetic analyses of the two core domains showed that the two domains separated very early, resulting in the evolution of the bacterial and organelle PNPases and the exosome proteins found in eukaryotes and some archaea.  相似文献   

16.
17.
It has been reported that polynucleotide phosphorylase (PNPase) binds to RNA via KH and S1 domains, and at least two main complexes (I and II) have been observed in RNA-binding assays. Here we describe PNPase binding to RNA, the factors involved in this activity and the nature of the interactions observed in vitro. Our results show that RNA length and composition affect PNPase binding, and that PNPase interacts primarily with the 3′ end of RNA, forming the complex I-RNA, which contains trimeric units of PNPase. When the 5′ end of RNA is blocked by a hybridizing oligonucleotide, the formation of complex II-RNA is inhibited. In addition, PNPase was found to form high molecular weight (>440 kDa) aggregates in vitro in the absence of RNA, which may correspond to the hexameric form of the enzyme. We confirmed that PNPase in vitro RNA binding, degradation and polyadenylation activities depend on the integrity of KH and S1 domains. These results can explain the defective in vivo autoregulation of PNPase71, a KH point substitution mutant. As previously reported, optimal growth of a cold-sensitive strain at 18 °C requires a fully active PNPase, however, we show that overexpression of a novel PNPaseΔS1 partially compensated the growth impairment of this strain, while PNPase71 showed a minor compensation effect. Finally, we propose a mechanism of PNPase interactions and discuss their implications in PNPase function.  相似文献   

18.
In Escherichia coli, the cold shock response is exerted upon a temperature change from 37°C to 15°C and is characterized by induction of several cold shock proteins, including polynucleotide phosphorylase (PNPase), during acclimation phase. In E. coli, PNPase is essential for growth at low temperatures; however, its exact role in this essential function has not been fully elucidated. PNPase is a 3′-to-5′ exoribonuclease and promotes the processive degradation of RNA. Our screening of an E. coli genomic library for an in vivo counterpart of PNPase that can compensate for its absence at low temperature revealed only one protein, another 3′-to-5′ exonuclease, RNase II. Here we show that the RNase PH domains 1 and 2 of PNPase are important for its cold shock function, suggesting that the RNase activity of PNPase is critical for its essential function at low temperature. We also show that its polymerization activity is dispensable in its cold shock function. Interestingly, the third 3′-to-5′ processing exoribonuclease, RNase R of E. coli, which is cold inducible, cannot complement the cold shock function of PNPase. We further show that this difference is due to the different targets of these enzymes and stabilization of some of the PNPase-sensitive mRNAs, like fis, in the Δpnp cells has consequences, such as accumulation of ribosomal subunits in the Δpnp cells, which may play a role in the cold sensitivity of this strain.  相似文献   

19.
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (DeltaKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the DeltaKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-DeltaKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Deltapnp mutation at 18 degrees C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号