首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of exogenous foliar glycine betaine (GB) and abscisic acid (ABA) on papaya responses to water stress were investigated under distinct water regimes. Papaya seedlings (Carica papaya L. cultivar “BH-65”) were pretreated with GB or ABA and subsequently subjected to consecutive periods of drought, rehydration, and a second period of drought conditions. Results indicated that water stress induced ABA, jasmonic acid (JA), and proline accumulation but did not modify malondialdehyde (MDA) concentration. In addition, water deprivation reduced photosynthetic rate, stomatal conductance, relative water content (RWC), leaf fresh weight, and increased leaf abscission. GB applied prior to drought imposition decreased the impact of water stress on ABA, JA, proline accumulation, leaf water status, growth, and photosynthetic performance. However, ABA-pretreated plants did not show alteration of most of these parameters under water stress conditions when compared with non-pretreated plants except a clear induction of JA accumulation. Taken together, the data suggest that GB may modulate ABA, JA, and proline accumulation through the control of stomatal movement and the high availability of compatible solutes, leading to improvement of leaf water status, growth, and photosynthetic machinery function. In contrast, exogenous ABA did not stimulate papaya physiological responses under drought, but interestingly ABA in combination with drought could induce progressive JA synthesis, unlike drought alone, which induces a transitory JA increase and may trigger endogenous ABA accumulation. The data also suggest that irrespective of the pretreatments, papaya did not suffer oxidative damage.  相似文献   

2.
Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil‐plant‐atmosphere (SPA) model to leaf and stand‐scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. Vcmax and Jmax) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ~23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co‐limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought‐tolerant behaviour that contrasted with mesic trees' drought‐avoidance behaviour.  相似文献   

3.
The objectives of the study were to assess the phenotypic variation in the vulnerability to water stress-induced cavitation (estimated by P50, or the xylem water potential which causes a 50% loss of conductivity) and the trade-offs between P50 and related hydraulic traits, i.e., stem specific conductivity (K s), slope of the vulnerability curve (slope), wood density and branch size. Variability was examined for six Pinus pinaster populations covering the latitudinal range of the species and plasticity was tested through two provenance-progeny trial sites (xeric/mesic). As expected, the overall values of P50, K s and branch size decreased in the xeric site. Variation in P50 and K s among populations was mainly the result of phenotypic plasticity, while wood density was genetically controlled and not affected by the environment. Stress conditions in the xeric site promoted a convergence in P50 and K s as a result of the high phenotypic plasticity of the populations from mesic origins. In the mesic site, the ranking of populations for cavitation resistance and hydraulic capacity was consistent with the geographic location of the seed source. Higher resistance to cavitation was related to lower K s, branch size and slope, mainly at the population level, but also as a general trend across individuals. In a warmer and drier climate, there could be a potential selection of Pinus pinaster populations from mesic origins, which showed a great responsiveness and adjustment to drought conditions (similar or higher P50 than the populations from dry origins), in addition to a high wood density and growth.  相似文献   

4.
Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.  相似文献   

5.
Abscisic acid (ABA), salicylic acid (SA) and γ‐aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5‐oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress‐defense secondary metabolism by GABA.  相似文献   

6.
为研究油茶(Camellia oleifera A)嫁接时穗条和砧木创伤后内源激素动态变化规律,解析影响砧穗嫁接面愈合的生理机制,为油茶砧穗愈合生长机理提供理论支持。以树龄6年的长林18号和53号的穗条和实生砧木为材料,按照芽苗砧嫁接方法切割穗条S0(0 min)、S10(10 min)、S40(40 min)和砧木茎段Z0(0 min)、Z10(10 min)后,利用液质联用法(HPLC-MS)测定吲哚乙酸(IAA)、脱落酸(ABA)、反式玉米素(TZR)、玉米素(Zeatin)、水杨酸(SA)和茉莉酸(JA)含量,分析不同时间段内源激素变化及品种间差异的关系。结果显示:创伤后18号的TZR、Zeatin和SA含量总体高于53号;18号IAA、SA和JA逐渐下降;TZR和Zeatin分别在S10和S0达最高值后下降;ABA在S10达最高值。53号IAA和JA爱S10达最高值后下降;TZR、Zeatin和SA在S10达低值后逐渐上升;ABA在S0达高值后逐渐下降。砧木茎段创伤前后激素含量除JA外18号高于53号;两品种Z0时激素含量下降,Z10后上升,仅53号ABA和SA含量在Z0达高值后下降。砧木茎段和根部激素含量在品种间除JA外18号高于53号,茎段的IAA、ABA高于根部,其他激素为根部高于茎段。激素比值在品种间和部位间差异明显;IAA/ABA、IAA/TZR、IAA/Zeatin和IAA/JA、ABA/TZR、ABA/Zeatin和ABA/JA比值为53号高于18号;穗条内SA/IAA为18号高于53号,SA/JA和SA/ABA为53号高于18号;砧木茎段均为18号高于53号;TZR/SA、TZR/JA比值在穗条和砧木茎段为18号高于53号。两品种创伤后IAA与JA极显著正相关,而IAA与SA,SA与JA在18号极显著正相关,53号极显著或显著负相关;53号TZR、Zeatin、SA间极显著或显著正相关,JA与TZR、Zeatin和SA极显著负相关。砧木茎段创伤后18号激素间为极显著或显著正相关;53号TZR和Zeatin与IAA、JA极显著正相关,与SA存在显著负相关,SA与JA有显著负相关。砧木茎段和根部间品种间仅在SA与各激素间相关性存在差异,其他激素间存在极显著正相关或负相关。综上所述,砧穗创伤后激素水平上18号在创伤面易于愈伤组织发育,而53号抗逆激素水平较高且与细胞分裂增殖类激素负相关,可能影响53号嫁接后愈合生长;嫁接应在创伤后10 min内较为适宜;砧穗间激素含量及比值的差异可能会影响后期嫁接部位形态重建以及穗条生长。  相似文献   

7.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

8.
Moniliophthora perniciosa is the causative agent of witches' broom disease in Theobroma cacao. Exogenously provided abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) promoted mycelial growth, suggesting the ability of the pathogen to metabolize plant hormones. ABA, IAA, JA, and SA were found endogenously in the mycelium and in the fruiting body of the pathogen. The pathogen contained high amounts of SA in the mycelium (0.5+/-0.04 microg g(-1) DW) and IAA (2+/-0.6 microg g(-1) DW) in the basidiocarps. Growth of the mycelium in the presence of host leaves for 10 days did not affect ABA or JA content of the leaves but IAA and SA increased 2.5- and 11-fold, respectively. The amounts of IAA and SA in infected leaves increased beyond the levels of the uninfected leaves and suggest a synergistic response to host-pathogen interaction. The ability of M. perniciosa to produce and sustain growth in the presence of elevated endogenous IAA and SA levels during colonization indicates that these phytohormones contribute to its pathogenicity.  相似文献   

9.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

10.
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA‐regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome‐wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA‐responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA‐induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA‐ and ABA‐affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T‐DNA insertion mutant analysis to affect SA–JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA–JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.  相似文献   

11.
Summary Seeds of Anthoxanthum odoratum were transplanted reciprocally between a xeric and a mesic field population that were genetically differentiated in adult traits. In one experiment seeds were reciprocally buried in bags in the soil, in a second experiment seeds were reciprocally sown in small plots. For most traits, site effects were much larger than seed-source effects. Germination, emergence, mortality of buried seed and recruitment were significantly higher at the xeric site than at the mesic site, irrespective of population of origin. Seed dormancy, was significantly higher for seed originating from the mesic than from the xeric population. Seedling recruits originating from the xeric population tended to be larger at both sites. Fecundity of seedling recruits depended on the environment; fecundities of plants growing in the xeric site had more than double the fecundity of plants growing in the mesic site. Phenotypic plasticity rather than population differences determined variation in performance in the seed and seedling stages.  相似文献   

12.
13.
This study examined the role of endogenous abscisic acid (ABA) and jasmonic acid (JA) in indirect somatic embryogenesis of Medicago sativa L. A multiplex GC-MS/MS technique allowed quantitative single-run analyses of ABA, JA, 12-oxophytodienoic acid (OPDA) and indole-3-acetic acid (IAA). The preparation of initial explants led to a strong accumulation of ABA, JA and OPDA but not of IAA. Substantially higher levels of ABA, JA and OPDA were detected in developing somatic embryos than in callus or embryogenic suspension. Fluridone (FLD) decreased ABA, JA and OPDA levels. Indoprofen (INP) appeared to be a specific inhibitor of octadecanoid biosynthesis. Somatic embryo production and development were negatively affected by FLD or INP. Only INP (0.5 μM) applied during proliferation phase increased the number of cotyledonary embryos. The results strongly indicate the involvement of ABA and JA in somatic embryogenesis of M. sativa. Surprisingly, low IAA contents in comparison to stress-related compounds (ABA, JA and OPDA) were detected in explants, embryogenic tissues and somatic embryos.  相似文献   

14.
Jasmonic acid (JA) and salicylic acid (SA) regulate stomatal closure, preventing pathogen invasion into plants. However, to what extent abscisic acid (ABA), SA and JA interact, and what the roles of SA and JA are in stomatal responses to environmental cues, remains unclear. Here, by using intact plant gas-exchange measurements in JA and SA single and double mutants, we show that stomatal responsiveness to CO2, light intensity, ABA, high vapor pressure deficit and ozone either did not or, for some stimuli only, very slightly depended upon JA and SA biosynthesis and signaling mutants, including dde2, sid2, coi1, jai1, myc2 and npr1 alleles. Although the stomata in the mutants studied clearly responded to ABA, CO2, light and ozone, ABA-triggered stomatal closure in npr1-1 was slightly accelerated compared with the wild type. Stomatal reopening after ozone pulses was quicker in the coi1-16 mutant than in the wild type. In intact Arabidopsis plants, spraying with methyl-JA led to only a modest reduction in stomatal conductance 80 min after treatment, whereas ABA and CO2 induced pronounced stomatal closure within minutes. We could not document a reduction of stomatal conductance after spraying with SA. Coronatine-induced stomatal opening was initiated slowly after 1.5–2.0 h, and reached a maximum by 3 h after spraying intact plants. Our results suggest that ABA, CO2 and light are major regulators of rapid guard cell signaling, whereas JA and SA could play only minor roles in the whole-plant stomatal response to environmental cues in Arabidopsis and Solanum lycopersicum (tomato).  相似文献   

15.
Water-deficit irrigation to grapevines reduces plant growth, yield, and berry growth, altering the ripening process, all of which may influence fruit composition and wine quality. Therefore, the goals of this study were (1) to investigate the influence of the main endogenous berry hormones, abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acid (JA), on berry growth and ripening under water-deficit conditions and (2) to analyze changes in fruit composition, specifically N compounds, under water deprivation. The study was carried out using container-grown Tempranillo grapevines grown under controlled conditions in a greenhouse. Two irrigation treatments were imposed: control (well-watered) and sustained deficit irrigation (SDI). Water deficit decreased leaf area and the source-to-sink ratio, reduced yield and berry size, and decreased concentrations of the main phenolic compounds. SDI also modified berry hormonal status. At the pea-size stage, SDI berries had lower IAA and higher JA and SA than nonstressed berries. At veraison (onset of ripening), accumulation of ABA was less accentuated in SDI than in control berries. At harvest, the content of amino acids and free ammonium was low in both treatments but SDI-treated berries showed a significant accumulation of amines. Results suggest that water restrictions to grapevines might be playing a physiological role in reducing berry growth through affecting hormone dynamics, phenolic synthesis, and the berry amino acid content and composition, which could compromise fruit quality. Possible roles of endogenous IAA controlling berry size and endogenous ABA and SA controlling levels of anthocyanins and flavonols at harvest are discussed.  相似文献   

16.
17.
Phytohormones are central players in sensing and signaling numerous environmental conditions like drought stress. In this work, an experimental system based on severe drought was established and hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis was studied in roots of citrumelo CPB 4475 (a commercial citrus rootstock) plants. JA concentration transiently increased after a few hours of stress, returning to control levels 30 h after the onset of the condition. A more progressive ABA accumulation was observed, with the onset of this increase at the same time or right after the JA transient accumulation. Molecular data suggested that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also pointed to a possible involvement of JA on ABA biosynthesis under stress. To test this hypothesis, JA and ABA biosynthesis were chemically inhibited and subsequently phenotypes rescued by the addition of exogenous hormones. Results showed that the early JA accumulation was necessary for the subsequent ABA increase in roots under stress whereas the opposite could not be stated. The model includes a burst of JA in roots of citrus under severe drought stress conditions that leads to a more progressive ABA accumulation that will induce later plant responses. The present work adds a new level of interaction between JA and ABA at the biosynthetic level that together with the previously described interaction between signal transduction cascades of the two hormones would allow plants to fine‐tune specific responses to different stimuli.  相似文献   

18.
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA‐Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1‐1) and in JA‐dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA‐Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress‐induced JA‐Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.  相似文献   

19.
Our current ability to detect and predict changes in forest ecosystem productivity is constrained by several limitations. These include a poor understanding of belowground productivity, the short duration of most analyses, and a need for greater examination of species- or community-specific variability in productivity studies. We quantified aboveground net primary productivity (ANPP) over 3 years (1999–2001), and both belowground NPP (BNPP) and total NPP over 2 years (2000–2001) in both mesic and xeric site community types of the mixed mesophytic forest of southeastern Kentucky to examine landscape variability in productivity and its relation with soil resource [water and nitrogen (N)] availability. Across sites, ANPP was significantly correlated with N availability (R2 = 0.58, P = 0.028) while BNPP was best predicted by soil moisture content (R2 = 0.72, P = 0.008). Because of these offsetting patterns, total NPP was unrelated to either soil resource. Interannual variability in growing season precipitation during the study resulted in a 50% decline in mesic site litter production, possibly due to a lag effect following a moderate drought year in 1999. As a result, ANPP in mesic sites declined 27% in 2000 compared to 1999, while xeric sites had no aboveground production differences related to precipitation variability. If global climate change produces more frequent occurrences of drought, then the response of mesic sites to prolonged moisture deficiency and the consequences of shifting carbon (C) allocation on C storage will become important questions.  相似文献   

20.
An increase in temperature and water deficits caused by the ongoing climate change might lead to a decline growth rates and threaten the persistence of tree species in drought-prone areas within the Mediterranean Basin. Developmental instability (the error in development caused by stress) may provide an index of the adaptability of woody plants to withstand climatic stressors such as water shortage. This study evaluated the effects of drought stress on growth variables in three stands of a Mediterranean oak (Quercus faginea) exposed to differing climatic conditions (xeric, mesic and cooler) along an altitudinal gradient in northeastern Spain, in two climatically contrasting years (wet and dry years). Two indices of developmental instability, fluctuating and translational asymmetries, which reflect environmental stress, were measured in leaves and current-year shoots, respectively. We also measured branch biomass and fractal complexity of branches as indicators of the species’ performance. After a period of drought the individuals’ at the most xeric site presented lower developmental instability and less branch biomass than did the individuals from the mesic and cooler sites. We interpret that difference as an adaptive response to drought which reflects a trade-off between maintenance of homeostasis and growth when water is scarce. The study demonstrated that developmental instability constitutes a useful index to assess the degree of adaptation to stressful environmental conditions. The assessment of developmental instability in sites and years with contrasting climatic conditions provides a means of quantifying the capacity of plants to develop plastic adaptive responses to climatic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号