首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Tsuga canadensis (L.) Carr. forests of the southern Appalachian Mountains are currently facing imminent decline induced by a nonnative insect pest, the hemlock woolly adelgid (Adelges tsugae Annand). To effectively manage these forest systems now and in the future, land managers need baseline data on forest structure and dynamics prior to large-scale Tsuga canadensis mortality. Most of our knowledge concerning the dynamics of Tsuga canadensis forests comes from more northern locations such as the Great Lakes region and New England and, therefore, may not pertain to the ecological systems found within the southern Appalachian Mountains. We examined the structure and canopy dynamics of four Tsuga canadensis forest stands within the Cataloochee watershed, in the far eastern part of Great Smoky Mountains National Park (GSMNP). We characterized the environmental settings and vertical forest layers, as well as the diameter and age-structures of each Tsuga canadensis forest stand. These environmental and structural data showed that there were indeed differences between forest stands with and without successful Tsuga canadensis regeneration. The two forest stands exhibiting successful Tsuga canadensis regeneration were located above 1,000 m in elevation on well-drained, moderately steep slopes and had the greatest canopy openness. Structural data from these two forest stands indicated a history of more continuous Tsuga canadensis regeneration. We also constructed disturbance chronologies detailing the history of canopy response to disturbance events and related these to Tsuga canadensis regeneration within each forest stand. Student t-tests adjusted for unequal variances indicated significant differences in the number of release events per tree between forest stands with and without successful Tsuga canadensis regeneration. While forest stands with successful Tsuga canadensis regeneration were more frequently disturbed by minor to major canopy disturbances, events of moderate intensity were found to be most significant in terms of regeneration. These data will be of value to land managers maintaining stands of Tsuga canadensis where treatment for hemlock woolly adelgid infestation has been successful. In areas where treatment is impractical or unsuccessful, land managers will be able to use these data to restore Tsuga canadensis forests after the wave of hemlock woolly adelgid induced mortality has passed. As of August 2008, Joshua A. Kincaid will be a member of the Environmental Studies program at Shenandoah University in Winchester, Virginia, USA  相似文献   

2.
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock woolly adelgid, HWA, Adelges tsugae. We measured and quantified changes in microclimate; canopy mortality; canopy and shrub growth; understory species composition; and the cover and diversity in riparian forests dominated by eastern hemlock Tsuga canadensis over a period of seven years. Treatments manipulated hemlock mortality either through invasion (HWA infested stands) or girdling (GDL) hemlock trees. Mortality was rapid, with 50% hemlock tree mortality occurring after six years of invasion, in contrast to more than 50% mortality in two years following girdling. Although 50% of hemlock trees were still alive five years after infestation, leaf area lost was similar to that of girdled trees. As such, overall responses over time (changes in light transmittance, growth, soil moisture) were identical to girdled stands with 100% mortality. Our results showed different growth responses of the canopy species, shrubs and ground layer, with the latter being substantially influenced by presence of the evergreen shrub, rhododendron Rhododendron maximum. Although ground layer richness in the infested and girdled stands increased by threefold, they did not approach levels recorded in hardwood forests without rhododendron. Increased growth of co‐occurring canopy trees occurred in the first few years following hemlock decline, with similar responses in both treatments. In contrast, growth of rhododendron continued to increase over time. By the end of the study it had a 2.6‐fold higher growth rate than expected, likely taking advantage of increased light available during leaf‐off periods of the deciduous species. Increased growth and dominance of rhododendron may be a major determinant of future responses in southern Appalachian ecosystems; however, our results suggest hemlock will be replaced by a mix of Acer, Betula, Fagus and Quercus canopy genera where establishment is not limited by rhododendron.  相似文献   

3.
Invasions by introduced pests can interact with other disturbances to alter forests and their functions, particularly when a dominant tree species declines. To identify changes after invasion by the insect hemlock woolly adelgid (Adelges tsugae; HWA), coinciding with severe droughts and hurricanes, this study compared tree species composition of eastern hemlock (Tsuga canadensis) forests on 11 plots before (2001) and 15 years after (2016) invasion in the southern Appalachian Mountains, USA. Losses of hemlock trees after HWA invasion were among the highest reported, with a 90% decline in density, 86% decline in basal area, and 100% mortality for individuals ≥ 60 cm in diameter. In contrast to predictions of theoretical models, deciduous tree density declined after HWA invasion, while basal area changed little, at least during the initial 15 years after invasion. Overall, forest density declined by 58%, basal area by 25%, and tree species richness by 8%. Factors additional to HWA likely exacerbating forest decline included: droughts before (1999–2001) and after HWA invasion (2006–2008); tree uprooting from hurricane-stimulated winds in 2004; pest-related declines of deciduous tree species otherwise likely benefitting from hemlock’s demise; death of deciduous trees when large hemlocks fell; and competition from aggressive understory plants including doghobble (Leucothoe fontanesiana), rosebay rhododendron (Rhododendron maximum), and Rubus spp. Models of forest change and ecosystem function should not assume that deciduous trees always increase during the first decades after HWA invasion.  相似文献   

4.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

5.
To evaluate the effects of canopy gaps and forest floor microsites (soil, fallen logs, root-mounds, buttresses and stumps) on regeneration of subalpine forests, the gap regeneration and seedling occurrence of conifers (Abies mariesii, Abies veitchii, Picea jezoensis var. hondoensis and Tsuga diversifolia) were studied in two stands of a subalpine old-growth forest, central Japan. The percentage of gap area to total surveyed area was 11.2–11.3% in the stands. Gap regeneration was not common for P. jezoensis var. hondoensis and T. diversifolia. In contrast, gap regeneration by advanced regeneration was relatively common for Abies. Seedling occurrence of P. jezoensis var. hondoensis and T. diversifolia was restricted on elevated surfaces such as stumps and root-mounds, while Abies seedlings could occur on soil as well as on elevated surfaces. Rotten stumps were the most favorable microsites for conifer seedling occurrence, which covered small area in the forest floor. Although canopy gaps were not always favorable for seedling occurrence, all conifer seedlings were larger under canopy gaps than under closed canopy. Canopy gaps and forest floor microsites clearly affected seedling occurrence and growth of conifers. This suggests that regeneration of conifers is related to the difference of growth advantage under canopy gaps and favorable microsites for seedling occurrence.  相似文献   

6.
The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that hemlock would decline more rapidly from girdling than from HWA infestation. Unexpectedly, in response to both girdling and HWA infestation, hemlock basal area increment (BAI) reduced substantially compared to reference hardwoods in 3 years. This decline was concurrent with moderate increases in the BAI of co-occurring hardwoods. Although the girdling treatment resulted in an initial pulse of hemlock needle inputs, cumulative litter inputs and O horizon mass did not differ between treatments over the study period. Following girdling and HWA infestation, very fine root biomass declined by 20–40% in 2 years, which suggests hemlock root mortality in the girdling treatment, and a reduction in hemlock root production in the HWA treatment. Soil CO2 efflux (E soil) declined by approximately 20% in 1 year after both girdling and HWA infestation, even after accounting for the intra-annual variability of soil temperature and moisture. The reduction in E soil and the concurrent declines in BAI and standing very fine root biomass suggest rapid declines in hemlock productivity from HWA infestation. The accelerated inputs of detritus resulting from hemlock mortality are likely to influence carbon and nutrient fluxes, and dictate future patterns of species regeneration in these forest ecosystems. AEN performed research and analyzed data; NW performed research, analyzed data, and wrote the article; CRF contributed new methods, analyzed data, and wrote the article; RLH designed the study; JMV conceived of and designed the study; and BDK performed research.  相似文献   

7.
The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), has spread rapidly across the eastern USA since its introduction from Japan 60 years ago, causing widespread mortality of both eastern hemlock [Tsuga canadensis (L.) Carrière] and Carolina hemlock [Tsuga caroliniana Engelm. (Pinaceae)]. Although HWA spread patterns have been repeatedly analyzed at regional scales, comparatively little is known about its dispersal potential within and between hemlock stands. As the small size and clonal nature of HWA make it nearly impossible to identify the source populations of dispersing individuals, we simulated intra‐stand HWA movement in the field by monitoring the movement of clumps of fluorescent powder that are slightly larger than HWA, but much easier to detect in the forest understory. Using three hemlock trees with three colors of fluorescent powder as source populations, we detected dispersal events at the farthest distances within our trapping array (400 m). However, more than 90% of dispersal events were <25 m. Dispersal patterns were similar from all three source trees and the distribution of dispersal distances in all cases could be described by lognormal probability density functions with mean dispersal distance of 12–14 m, suggesting that dispersal was relatively independent of location of source trees. In general, we documented tens of thousands of passive dispersal events in the forest understory despite the presence of a dense forest canopy. Thus, even under relatively light‐wind conditions, particles of similar dimensions to HWA are capable of intra‐stand movement, suggesting that a large population of HWA could rapidly infest other trees within several hundred meter radius, or beyond.  相似文献   

8.
Exotic insect pests may strongly disrupt forest ecosystems and trigger major shifts in nutrient cycling, structure, and composition. We examined the relationship between these diverse effects for the hemlock woolly adelgid (HWA, Adelges tsugae Annand) in New England forests by studying its impacts on local canopy processes in stands differing in infestation levels and linking these impacts to shifts in canopy nutrient cycling and stand and landscape effects. HWA initiated major changes in canopy biomass and distribution. Whereas uninfested trees exhibit a significant decline in canopy biomass from the center to the periphery and a positive correlation between total needle litter and estimated biomass, infested trees have significantly less total canopy biomass, produce less new foliage, shed relatively more needles, and exhibit no correlation between litter and canopy biomass. Foliar N content of infested trees was 20%–40% higher than reference trees, with the strongest increase in young foliage supporting the highest densities of HWA. Foliar %C was unaffected by HWA or foliar age. Epiphytic microorganisms on hemlock needles exhibited little variation in abundance within canopies, but colony-forming units of bacteria, yeast, and filamentous fungi were 2–3 orders of magnitude more abundant on medium and heavily infested than uninfested trees. Throughfall chemistry, quantity, and spatial pattern were strongly altered by HWA. Throughfall exhibits a strong gradient beneath uninfested trees, decreasing in volumes from the canopy periphery to the trunk by more than 45%. The amount of throughfall beneath infested trees exhibits no spatial pattern, reaches 80%–90% of the bulk precipitation, and is characterized by significantly higher concentrations of nitrogen compounds, dissolved organic carbon, and cations. Across the southern New England landscape there is a strong south-to-north gradient of decreasing hemlock tree and sapling mortality and understory compositional change that corresponds to the duration of infestation. Regionally, black birch (Betula lenta L.) is profiting most from hemlock decline by significantly increasing in density and cover. These findings suggest that it is necessary to study the connections between fast/small-scale processes such as changes in nutrient cycling in tree canopies and slow/integrative processes like shifts in biogeochemieal cycling and compositional changes at forest stands and landscapes to better understand the effects of an exotic pest species like HWA on forest ecosystem structure and function.  相似文献   

9.
以呼伦贝尔沙地樟子松地理分布南缘天然林为研究对象,采用Hegyi竞争指数与点格局等分析方法,研究了沙地樟子松天然林的种群结构、种内竞争、空间格局及幼树更新等特征。结果表明:1)所调查区域天然沙地樟子松纯林处于中幼龄阶段,属增长型种群;2)其竞争指数与对象木胸径服从幂函数关系CI=242.24D~(-1.12)(R~2=0.91);3)幼树在小尺度上呈聚集分布,中树与大树在中大尺度上呈随机分布;幼树与中树在小尺度上呈正相关性,中树与大树在小尺度呈负相关性;4)竞争指数与更新幼树和存活更新幼树的密度均呈显著正相关性。在林分管理中需要充分考虑林木竞争、空间格局以及种群更新的关系,本研究可为沙地樟子松天然林的经营管理与保护提供重要的科学依据。  相似文献   

10.
Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late‐successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.  相似文献   

11.
Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long‐term dynamics of Tsuga canadensis‐northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small‐diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old‐growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum‐dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes.  相似文献   

12.
Canopy tree recruitment is inhibited by evergreen shrubs in many forests. In the southern Appalachian mountains of the USA, thickets of Rhododendron maximum L. restrict dominant canopy tree seedling survival and persistence. Using R. maximum as a model system, we examined available light under the thickets and the photosynthetic responses of seedlings of canopy tree species. We tested the hypothesis that the additional shading from under R. maximum drives carbon gain in seedlings below the threshold for growth and survival. A reduction in light under the thicket was found where canopy openness (derived from canopy photographs) under R. maximum was half the amount measured in forest without R. maximum. R.␣maximum also reduced direct radiation by 50% and diffuse radiation by 12–29% compared to forest without the shrub layer. Mean mid-day PPFD (photosynthetically active photon flux density between 1000 and 1400 h) under R. maximum (obtained from quantum sensors) was below 10 mol m−2 s−1 on both clear and overcast days and the amount of sunflecks greater than 10 mol m−2 s−1 PPFD was only 0–20 min per day. In contrast, forest without R. maximum received a mean PPFD of 18–25 mol m−2 s−1 on clear days and a cumulative sunfleck duration of 100–220 min per day in all sky conditions. Consistent with light availability between the sites, daily carbon gain in Quercus rubra L. seedlings was lower in forest with R. maximum compared to forest where the shrub was absent. The presence of the shrub layer also significantly suppressed average mid-day photosynthesis of both Q. rubra and Prunus serotina Ehrt. seedlings on 8 out of 11 measurement dates. However, parameters derived from light response curves between seedlings growing in forest sites with or without a thicket of R. maximum was significantly different only in A max (maximum photosynthetic rate), indicating a lack of further acclimation to the deeper shade under R. maximum. While the additional shade cast by R. maximum is sufficient to prevent the regeneration of tree seedlings under this shrub, there was sufficient heterogeneity in light under the thicket to imply that deep shade only partially explains the complete inhibition of regenerating canopy trees under R. maximum.  相似文献   

13.
Vetaas  Ole R. 《Plant Ecology》2000,146(2):137-144
Poor regeneration of oak forest has been observed in north America and Eurasia. In the Himalaya it has mainly been explained by anthropogenic pressures. This study analyses the regeneration of two Quercus semecarpifolia Sm. forests (2–3000 m a.s.l.), where one forest has almost nil disturbance and the other has different degrees of canopy disturbance. The relationships between biotic and abiotic environmental variables and the number of Quercus semecarpifolia seedlings and saplings (i.e., recruits <10 cm Diameter at Breast Height (DBH)) were analysed by means of Generalized Additive Models (GAM). The two forests were compared with respect to size-class distributions of mature trees (i.e., >10 cm DBH), and the number of recruits.The size-class distributions indicate that regeneration is most reliable in the nearly undisturbed forest. Most recruits were found under high canopy cover and high potential radiation. Canopy disturbance has a negative effect on the number of seedlings. Seedlings seem to prefer a pH of around 6, Loss-on-Ignition between 20 and 30 %, and total nitrogen between 2 and 3 %. In general, there were very few plots with saplings, and there was not a clear relationship between the number of saplings and the soil variables. The size-class diagrams indicate a lack of young trees in the disturbed forest, and it is hypothesized that fire may inhibit recruits reaching the canopy phase.  相似文献   

14.
郑芬  李兆佳  邱治军  赵厚本  周光益 《生态学报》2020,40(13):4516-4527
光环境与幼树功能性状的关系对天然林的更新与演替具有重要的生态学意义。以广东南岭区域天然常绿阔叶林下不同林龄(幼龄林,中龄林,老龄林)的森林群落为研究对象,通过监测冠层结构、林下光照数据和林下幼树功能性状等指标,研究林龄梯度下其冠层结构与林下光环境之间的关系,以及林下幼树功能性状对光环境的响应。结果表明:(1)中龄林叶面积指数显著高于幼龄林和老龄林(P<0.05),随着林龄的增长,林冠开度和透光率逐渐下降,林龄梯度下透光率、R/FR(红光/远红光比值)、Bw/Rw(宽带蓝光/宽带红光比值)差异极显著(P<0.001);(2)天然常绿阔叶林中透光率与光质之间极显著相关(P<0.001),R/FR随着透光率的增加而增加,Bw/Rw随着透光率的增加而减少。(3)林下幼树功能性状在光环境之间差异显著(P<0.05),老龄林林下幼树叶片氮含量显著高于幼龄林,而叶片重叠率显著低于幼龄林;(4)在本试验地中,R/FR和Bw/Rw的变化对林下幼树的高径比和光合作用并无显著影响,光强对同种植物不同光环境下最大净光合速率的影响较大。总体而言,林龄梯度冠层结构和光环境的差异能在一定程度...  相似文献   

15.
Cecropia schreberiana Miq. (Cecropiaceae) is a common tree in the Luquillo Mountains of Puerto Rico because it is a pioneer that establishes abundantly after recurrent hurricanes that damage Luquillo forests. In these forestsC. schreberiana typically reaches about 20 m in height and 60 cm dbh and has few branches, these bearing large, deeply lobed leaves. The wood is light and weak. Unlike most of its congeners,C. schreberiana in Puerto Rico does not have symbiotic ants. It is dioecious and produces wind-pollinated flowers in spikes and abundant minute seeds broadly dispersed by birds and bats. Forest soils contain a high density of its seeds, which lie dormant until canopy opening stimulates germination. With adequate nutrientsC. schreberiana grows fast in high light, while nondominant individuals suffer heavy mortality. An individual of the species is thought to live 30 to 50 years. Cecropia schreberiana is uncommon in abandoned pastures in the Luquillo Mountains. It colonizes road cuts, landslides, and infrequent, large treefall gaps. Yet these disturbances provide only a limited “background regeneration,” which is not sufficient to maintain the species’ observed high abundance in Luquillo forests. However, there is widespread and abundantC. schreberiana regeneration after hurricane damage opens the forest canopy. Despite high mortality among these post-hurricane colonizers, enough survive and grow so thatC. schreberiana is generally among the ten most common canopy trees in the widespread “tabonuco” forest type. Post-hurricane colonizers mature, senesce, and decline in number, butC. schreberiana remains abundant as seeds in the soil ready to form tree cohorts after disturbance. The status of theC. schreberiana population indicates the developmental status of the forest as a whole. Moreover,C. schreberiana performs a key function in the reorganization of Luquillo forest ecosystems after disturbance, when its abundant regeneration and rapid growth capture and store nutrients. Also, its colonizing saplings may facilitate succession to mature forest by excluding grasses, herbs, and vines that hinder forest development. The biology of this species both reflects and helps drive the dynamics of forests in the Luquillo Mountains.  相似文献   

16.
The natural occurrence of dogwood anthracnose (Discula destructiva) on young dogwood seedlings planted in different microenvironments in the southern Appalachian Mountains provided an opportunity to examine the effects of biotic stress on phenolic defense and insect herbivory. Dogwood trees planted in forest understory, canopy gaps, and along forest edge sustained high levels of infection and mortality. In contrast, trees planted in full sun and under shade cloth in an adjacent open field sustained much lower levels of infection and no mortality. No consistant relationships were present between anthracnose infection, phenolic defenses and herbivore performance. Nevertheless, the tendency for moderately infected dogwood saplings to have higher levels of plant tannins than uninfected trees may suggest an immune response. Insect herbivory was relatively unaffected by the degree of anthracnose infection.  相似文献   

17.
为探讨江西武夷山南方铁杉针阔混交林内不同微地形中幼树更新特征的差异,明晰不同微地形生境对幼树天然更新的影响。以江西武夷山国家级自然保护区内海拔约1800m的南方铁杉针阔混交原始林为研究对象,基于在其中建立的中亚热带南方铁杉针阔混交林动态监测固定样地首次调查数据,将固定样地中160个20m×20m的样方根据其海拔、凹凸度和坡度3种地形参数通过C-均值模糊聚类划分成不同的微地形生境,比较这不同微地形下的更新幼树种类组成及幼树更新特征,包括幼树密度,幼树平均胸径、平均高、平均冠幅,空间分布格局,分析不同微地形下幼树更新特征与地形因子、林分因子之间的关系。结果显示:(1)通过聚类分析,最终将固定样地的微地形生境划分成4类,分别为陡坡、凹地、凸地、缓坡。(2)4类微地形更新幼树优势种组成类似,但优势程度存在差异。闽皖八角幼树在4类微地形中的重要值皆为第一,均大于43%。建群种南方铁杉的幼树在凸地的重要值为9.09%,具有一定优势;在陡坡的重要值为0.62%,优势程度较差。(3)陡坡的更新幼树密度最高,为399株/hm~2,高于凹地,凸地和缓坡;幼树平均胸径和平均高的大小表现为:缓坡>凸地&...  相似文献   

18.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

19.
To investigate the influence of multiple canopy openings on the composition and diversity of recruited saplings in a forest frequently disturbed by typhoons. We conducted tree-by-tree censuses (diameter at breast height ≥ 1 cm) and mapped gaps (canopy height < 5 m) in 1993, 2000, 2008, and 2013 in a tropical mountain zonal foothill evergreen broad-leaved forest in Nanjenshan Nature Reserve, Taiwan. We analyzed the composition and diversity of recruited saplings within a 2.1 ha plot (840 sampling quadrats (5 m × 5 m)) with variable numbers of canopy openings recorded during the study period. Composition of recruited saplings was dissimilar between quadrats that stayed opened and those that stayed closed throughout the study period (pairwise similarity estimates C02 = 0.52, 95% CI = 0.38–0.66). The quadrats under closed canopy had high diversity when weighting rare species (species richness), whereas quadrats with one or two gap opening records during the past 20 years had high diversity when weighting the abundance of species. Although canopy openings provided establishment conditions for saplings of some shade-intolerant species, due to the nature of small gap size, such habitats do not favor the dominance of shade-intolerant species. Even in a frequently disturbed forest, species composition and richness of recruited saplings were mainly contributed by shade-tolerant species. Although multiple canopy openings facilitated the establishment of shade-intolerant species, species diversity in the study forests is possibly mainly mediated by coexistence mechanisms of those shade-tolerant species rather than light-gap-related species strategies.  相似文献   

20.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号