首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main stages of the scientific biography of Professor Victor losifovich Rozengart are exposed: his works on muscle bioenergetics, discovery of the pathway of creatinine synthesis, his development of novel concepts of pathways of metabolism of organophosphorus xenobiotics, creation of biochemical grounds of selective toxicity as well as studies in the new field whose one of its founders he is--comparative biochemistry of toxic organophosphorus compounds.  相似文献   

2.
A dendritic poly(2-alkyloxazoline)-based polymer was studied as a new carrier system for the organophosphorus-hydrolyzing recombinant enzymes, organophosphorus acid anhydrolase and organophosphorus hydrolase. Paraoxon (PO) and diisopropylfluorophosphate (DFP) were used as model organophosphorus compounds. Changes in plasma cholinesterase activity were monitored. The cholinesterase activity was proportional to the concentrations of DFP or PO. Plasma cholinesterase activity was higher in animals receiving enzyme and oxime before the organophosphates than in the oxime-only pretreated groups. These studies suggest that cholinesterase activity can serve as an indicator for the in vivo protection by the nano-intercalated organophosphorus acid anhydrolase or organophosphorus hydrolase against organophosphorus intoxications. These studies represent a practical application of polymeric nano-delivery systems as enzyme carriers in drug antidotal therapy.  相似文献   

3.
During the course of investigation on organophosphorus insecticides, many organophosphorus compounds having methyl-, methyl-chloro-, methyl-nitro-, methyl-cyano-, methyl-thiocyano-, methoxy-nitro-, acyloxy-nitro-, and chloro-cyano-phenyl groups were prepared and their biological activities tested. As the results of these studies, two compounds were found as new low toxic organophosphorus insecticides, namely, O,O-dimethyl-O- (3-methyl-4-nitro-phenyl) and O,O-dimethyl-O- (4-cyanophenyl) phosphorothioates.  相似文献   

4.
The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Up to now, the determination of kinetic data has been achieved by techniques such as pH-stat titration, ion-selective electrodes, and fluorogenic substrate analogs. We report a new assaying method using in situ Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR) for the real-time determination of reaction rates. The method employs changes in the P-O-R stretching vibration of DFP and nerve agent substrates when hydrolyzed to their corresponding phosphoric and phosphonic acids. It is shown that the Lambert-Beer law holds and that changes in absorbance can be directly related to changes in concentration. Compared with other methods, the use of in situ FTIR spectroscopy results in a substantially reduced reaction volume that adds extra work safety when handling highly toxic substrates. In addition, the new method allows the noninvasive measurement of buffered solutions with varying ionic strengths complementing existing methods. Because the assay is independent of the used enzyme, it should also be applicable to other phosphotriesterase enzymes such as organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA), and paraoxonase (PON).  相似文献   

5.
A series of fluorinated oxime compounds was designed and synthesized in order to probe the effect of fluorine substitution on reactivation of inhibited acetylcholinesterase (AChE) by organophosphorus agents. Permeability measurements, using the Parallel Artificial Membrane Permeation Assays (PAMPA) method, were employed to experimentally demonstrate that membrane permeabilities of the series of oximes increase in proportional to the increase in the number of fluorine atoms. Among the compounds explored in this study, the mono-fluorinated carbamoyl aldoxime 4b was the most potent reactivator for paraoxon-inhibited red blood cell (RBC) AChE.  相似文献   

6.
The effects of diisopropylphosphorofluoridate (DFP) and other organophosphorus compounds on the locomotion of rabbit polymorphonuclear leucocytes have been investigated in vitro using time-lapse cinémicrography. Both phosphorylating and non-phosphorylating compounds were observed to inhibit cell locomotion, not only increasing the proportion of stationary cells, but also decreasing the velocity of those cells whose movement continued. This inhibition of locomotion occurred over the same concentration range of organophosphorus compound which was previously found to enhance the effect of leucocidin on the leucocyte. Although the inhibitory effects of low concentrations of organophosphorus compounds were partly reversible, higher concentrations produced effects which continued to increase even after the cells had been returned to normal medium. It is suggested that the supposed effect of organophosphorus compounds on chemotaxis may actually be due to the inhibition of locomotion per se, probably through the detergent properties of these compounds rather than their properties as enzyme inhibitors.  相似文献   

7.
建立一种以靛酚乙酸酯为底物的酯酶同工酶的显色新方法。酯酶样品的聚丙烯酰胺凝胶电泳(PAGE)凝胶用磷酸缓冲液漂洗约10min后,浸入含有0.002%靛酚乙酸酯的溶液显色5~10min,可显出清晰的蓝色酯酶带。先将酯酶凝胶板浸于有机磷农药溶液中,然后再用靛酚乙酸酯显色液显色,比较同工酶谱,从同工酶带由深蓝色变为浅蓝色的颜色变化,可以看出对有机磷农药敏感的同工酶所受到的抑制程度。  相似文献   

8.
Intoxication with organophosphorus compounds is an important clinical problem worldwide. Although the core treatments – atropine, oximes and diazepam – are defined, high case fatalities were reported for intoxication with organophosphorus insecticides. In particular the role of oximes is not completely understood since they might benefit only patients poisoned by specific pesticides or patients with moderate poisoning and few randomised trials of such poisoning have been performed. This justifies the need for new in vitro test-systems like cocultures of spinal cord and muscle tissue, which have been recently introduced. However this test-system is not yet fully characterized. In order to estimate the applicability of cocultures of spinal cord and muscle tissue their sensitivity to succinylcholine (di-acetylcholine), a depolarizing muscle relaxant in clinical use, was tested.  相似文献   

9.
A soil bacterium capable of metabolizing organophosphorus compounds by reducing the P=S group in the molecules was taxonomically identified as Klebsiella sp. strain F51-1-2. The gene involved in the reduction of organophosphorus compounds was cloned from this strain by the shotgun technique, and the deduced protein (named AKR5F1) showed homology to members of the aldo-keto reductase (AKR) superfamily. The intact coding region for AKR5F1 was subcloned into vector pET28a and overexpressed in Escherichia coli BL21(DE3). Recombinant His6-tagged AKR5F1 was purified in one step using Ni-nitrilotriacetic acid affinity chromatography. Assays for cofactor specificity indicated that reductive transformation of organophosphorus compounds by the recombinant AKR5F1 specifically required NADH. The kinetic constants of the purified recombinant AKR5F1 toward six thion organophosphorus compounds were determined. For example, the Km and kcat values of reductive transformation of malathion by the purified recombinant AKR5F1 are 269.5 ± 47.0 μΜ and 25.7 ± 1.7 min−1, respectively. Furthermore, the reductive transformation of organophosphorus compounds can be largely explained by structural modeling.  相似文献   

10.
Wheat seeds treated with organophosphorus insecticides exhibitdelayed germination both in the laboratory and in the field.Since (i) organophosphorus compounds inhibit cholinesteraseenzymes in animals and (ii) acetylcholine and cholinesterasehave been reported to occur in some plants, the hypothesis waspropounded that organophosphorus insecticides inhibit cholinesteraseactivity during cereal seed germination. Using biochemical andphysiological techniques, this hypothesis was tested in thelaboratory on wheat seeds germinated with and without the organophosphorusinsecticide, chlorfenvinphos. Evidence is presented for in vitroactivity of acetylcholinesterase in wheat seedlings and inhibitionof this activity by the insecticide. The possibility is discussedof a link between delayed germination and anti-cholinesteraseactivity of organophosphorus insecticides Wheat seeds, Triticum aestwum L., acetylcholinesterase, electrophoresis, germination, assay  相似文献   

11.
Human blood monocyte carboxylesterase (CBE) is inhibited by a variety of organophosphorus compounds including arylphosphates and arylphosphites and some alkylphosphites. Triphenyl phosphate and triphenyl phosphite with Ki values of 8 × 10−9 M and 4.8 × 10−8 M, respectively, are the most potent inhibitors of this enzyme evaluated by this study. The arylphosphates vary in their capacity to inhibit carboxylesterase activity. Diphenyl phosphate with its strong negative charge is not a potent inhibitor (Ki = 1 × 10−4 M), whereas if its negative charge is neutralized, as in diphenyl methyl phosphate, its capacity to inhibit carboxylesterase is significantly increased. Compounds with increased bulk, such as trinaphthyl phosphate, only inhibit the enzyme at concentrations of 10−5 M or greater. Arylphosphites have inhibitory capacities similar to the arylphosphates. Alkylphosphites (tributyl phosphite/triethyl phosphite) inhibit carboxylesterase activity, whereas alkylphosphates (tributyl phosphate/triethyl phosphate) have no inhibitory effect. Arylphosphines and arylphosphine oxides do not inhibit carboxylesterase activity. This study demonstrates that organophosphates and organophosphites are relatively effective inhibitors of human monocyte CBE activity with the exception of the alkylphosphates which have no inhibitory activity. We conclude that molecular bulk and charge have a significant role in determining the potency of organophosphorus inhibitors of monocyte CBE. The observed variations in the degree of esterase inhibition by organophosphorus compounds as well as the differences in the pathological expression of neuropathic disorders associated with such chemicals suggest that different esterase enzymes derived from the family of esterase genes may mediate the different neuropathies observed with organophosphorus exposures. Such data also provide the rationale for the kinetic analyses of esterases and the design of non-toxic organophosphorus compounds with low or no monocyte CBE inhibitory capacity to reduce the potential of these commonly used chemicals for human toxicity.  相似文献   

12.
The fiber-optic biosensor consisting of an acetylcholinesterase (AChE)-immobilized Langmuir–Blodegtt (LB) film was developed to detect organophosphorus compounds in contaminated water. The sensing scheme was based on the decrease of yellow product, o-nitrophenol, from a colorless substrate, o-nitrophenyl acetate, due to the inhibition by organophosphorus compounds on AChE. Absorbance change of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme portion of the sensor system was fabricated by the LB technique for formation of the enzyme film. AChE-immobilized LB film was formed by adsorbing the enzyme molecules onto a viologen monolayer using the electrostatic force. The proposed kinetics for irreversible inhibition of organophosphorus compounds on AChE agreed well with the experimental data. The surface topography of AChE-immobilized LB film was investigated by atomic force microscope (AFM). The immobilized AChE had the maximum activity at pH 7. The proposed biosensor could successfully detect the organophosphorus compounds upto 2 ppm and the response time to steady signal of the sensor was about 10 min.  相似文献   

13.
We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides.  相似文献   

14.
Water-in-oil microemulsion systems have been studied in recent years for a number of applications in protein separation and enzymology. Although it is well established that reversed micelle systems provide an excellent medium for nonaqueous biocatalytic studies, there is still much speculation as to the interaction of the enzyme with the surfactant interface. Polyoxyethylene sorbitan trioleate (Tween 85) is a nonionic surfactant which has some interesting properties for microemulsion formation and protein solubilization. In conjunction with a separate article describing the structural features of Tween 85 reversed micelles in hexane with isopropanol as a cosurfactant, this work describes the activity of an enzyme, organophosphorus hydrolase, for degrading organophosphorus pesticides in this microemulsion system. Ternary phase diagrams were constructed to outline the phase boundaries at different temperatures and isopropanol concentrations, which elucidate the role of the cosurfactant alcohol, as well as some features of micelle structure. Kinetic and stability studies with organophosphorus hydrolase show the effect of enzyme partitioning between the micelle surfactant layer and aqueous core. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Microbial degradation of organophosphorus compounds   总被引:29,自引:0,他引:29  
Synthetic organophosphorus compounds are used as pesticides, plasticizers, air fuel ingredients and chemical warfare agents. Organophosphorus compounds are the most widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales. Contamination of soil from pesticides as a result of their bulk handling at the farmyard or following application in the field or accidental release may lead occasionally to contamination of surface and ground water. Several reports suggest that a wide range of water and terrestrial ecosystems may be contaminated with organophosphorus compounds. These compounds possess high mammalian toxicity and it is therefore essential to remove them from the environments. In addition, about 200,000 metric tons of nerve (chemical warfare) agents have to be destroyed world-wide under Chemical Weapons Convention (1993). Bioremediation can offer an efficient and cheap option for decontamination of polluted ecosystems and destruction of nerve agents. The first micro-organism that could degrade organophosphorus compounds was isolated in 1973 and identified as Flavobacterium sp. Since then several bacterial and a few fungal species have been isolated which can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. The biochemistry of organophosphorus compound degradation by most of the bacteria seems to be identical, in which a structurally similar enzyme called organophosphate hydrolase or phosphotriesterase catalyzes the first step of the degradation. organophosphate hydrolase encoding gene opd (organophosphate degrading) gene has been isolated from geographically different regions and taxonomically different species. This gene has been sequenced, cloned in different organisms, and altered for better activity and stability. Recently, genes with similar function but different sequences have also been isolated and characterized. Engineered microorganisms have been tested for their ability to degrade different organophosphorus pollutants, including nerve agents. In this article, we review and propose pathways for degradation of some organophosphorus compounds by microorganisms. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are discussed. The major achievements and technological advancements towards bioremediation of organophosphorus compounds, limitations of available technologies and future challenge are also discussed.  相似文献   

16.
Chitin synthase from Coprinus cinereus (Schaeff. ex Fr.) S. F. Gray (= C. lagopus sensu Buller) was used as a model for chitin synthase from insects. The effect of dimilin (difluorobenzuron), captan (trichloromethylsulfonyl fungicide), kitazin P (organophosphorus ester fungicide) and parathion (organophosphorus insecticide) on the fungal enzyme was compared with the effect of nikkomycin (nucleoside-peptide antibiotic).Metabolic products of microorganisms. 180. M. Brufani, L. Celai, W. Keller-Schierlein, E. Pretsch: Revised structure of naphthomycin. J. Antibiot. (Tokyo) (in press)  相似文献   

17.
有机磷水解酶的挖掘、改造及应用   总被引:1,自引:0,他引:1  
白云鹏  程欢  许建和 《微生物学报》2017,57(8):1168-1179
有机磷化合物是一类广泛用作杀虫剂、增塑剂、阻燃剂的有毒化学品,由于难以降解而在农产品、水体和土壤中逐渐累积,容易引发严重的食品安全和环境污染问题。有机磷的酶促降解具有反应速度高和绿色环保等优点,是当前的研究热点。本文综述了近年来在有机磷水解酶的挖掘、改造及应用方面的研究进展,提出了进一步发展所面临的挑战和未来的研究方向,旨在为有机磷化合物的生物降解研究提供参考。  相似文献   

18.
Of sixteen compounds applied to soil in laboratory tests, azinphos-ethyl, P2188 (O,O-diethyl S-chloromethyl phosphorothiolothionate), ‘Dursban’ (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate), P1973 (S-(N-methoxycarbonyl-N-methylcarbamoylmethyl) dimethyl phosphorothiolothionate), B77488 (O,O-diethylphosphorothioate O-esterwith phenylglyoxylonitrile oxime) and R42211 (O,O-diethyl O-(2-diethylamino-6-methyl-pyrimidin-4-yl) phosphorothioate) killed wireworms when first tested, but in second tests with the same soils only ‘Dursban’, P2188 and B77488 did so. Treating seeds with ‘Dyfonate’ (O-ethyl S-phenyl ethyl phosphonodithioate) or with ethion/γ-BHC mixtures killed few wireworms. Three field trials compared the organophosphorus insecticides ‘Dursban’, ‘Dyfonate’ and phorate with organochlorine standards. In trials with barley and potatoes the standard was 3 lb a.i./acre (3·36 kg/ha) of aldrin. The organophosphorus compounds increased plant stands of barley almost as much as aldrin, although they killed fewer wireworms; and they protected fewer potato tubers from wireworm damage. The third trial compared the organophosphorus compounds with 0·5 lb a.i./acre (0·56 kg/ha) γ-BHC sprayed on a site drilled with sugar beet seed dressed with dieldrin. The γ-BHC increased plant stands almost as much as did 3 lb a.i./acre of the organophosphorus insecticides, and killed as many wireworms.  相似文献   

19.
A new method for obtaining stable butyrylcholinesterase (BuChE) samples based on the enzyme immobilization in starch and gelatin gels followed by drying is proposed. Coimmobilization of BuChE with the thiol group indicator 5,5'-dithiobis(2-nitrobenzoic) acid did not reduce the activity of BuChE, which allowed us to simplify the procedure and reduce the time of analysis of organophosphorus pesticides. The resulting immobilized samples retained activity for at least 300 days. BuChE samples based on the starch gel showed a greater sensitivity in the determination of pesticides as compared to the samples based on the gelatin gel.  相似文献   

20.
We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号