首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be ±0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.  相似文献   

2.
Densification of bulky forages by pelleting reduces their transportation, handling, and storage costs. Because of high shearing force and frictional heating during the pelleting process, it is hypothesized that pelleting of lignocellulosic biomass could also partially deconstruct its complex structure and facilitate bioethanol production. In this study, pelleted wheat straw, corn stover, big bluestem, and sorghum stalk were evaluated for sugars and ethanol production, and compared with those of unpelleted biomasses. Mass recovery after alkali pretreatment increased by 14%, 11%, 2%, and 5%, respectively, in unpelleted biomasses. Lignin content reduced significantly more in pelleted samples for all types of biomass, except sorghum stalk. Volumetric productivity of enzymatic hydrolysis was 23%, 21%, 20% and 12% higher, respectively, in pelleted samples; ethanol yield on the basis of released sugars did not differ significantly between pelleted and unpelleted samples. These results indicate that the pelleting process led to better enzymatic hydrolysis of pretreated biomasses without affecting the quality of sugars for fermentation. However, overall yield of ethanol from the raw biomass was not significantly higher in pelleted biomasses because of higher mass loss during pretreatment process. In our study, we propose a schematic for complete utilization of various byproducts for enhanced economic viability.  相似文献   

3.
A principle attribute of perennial grasses for biomass energy is the potential for high yields on marginal lands. Objectives of this study were to compare biomass and seed production of intermediate wheatgrass ( Thinopyrum intermedium [Host] Barkworth and D.R. Dewey), big bluestem ( Andropogon gerardii Vitman), and switchgrass ( Panicum virgatum L.) as affected by harvest timing and manure application on two topographic positions (footslope and backslope). Footslope is the hillslope position that forms the inclined surface at the base of a slope and backslope forms the steepest, middle position of the hillslope. Grasses were harvested for biomass at anthesis (summer), after a killing frost (autumn), or the following spring after overwintering in the field. Seed was harvested at maturity during 2003 and 2004. Two rates of beef cattle ( Bos taurus L.) manure (target rates of 0 and 150 kg total-N ha−1) were surface applied annually. Maximum annual biomass yield ranged from 4.4 to 5.2, 2.7 to 4.2, and 3.7 to 5.6 Mg ha−1 for intermediate wheatgrass, big bluestem, and switchgrass, respectively. Biomass yields were not different between fall and spring harvest treatments. Biomass yields of big bluestem and switchgrass at the backslope position were 86% and 96% of biomass yields at the footslope position with normal precipitation, respectively. Manure application increased biomass yield approximately 30% during the second year on both topographic positions. The highest seed yield was obtained from intermediate wheatgrass, followed by switchgrass and big bluestem. Utilizing these management practices in our environment, it appears that switchgrass and big bluestem could be allowed to overwinter in the field without suffering appreciable loss of biomass.  相似文献   

4.
High yielding, native warm-season grasses could be used as renewable bioenergy feedstocks. The objectives of this study were to determine the effect of warm season grass monocultures and mixtures on yield and chemical characteristics of harvested biomass and to evaluate the effect of initial seeding mixture on botanical composition over time. Switchgrass (Panicum virgatum L.), indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) were planted as monocultures and in all possible two- and three-way mixtures at three USA locations (Brookings and Pierre, SD and Morris, MN) during May 2002. Biomass at each location was harvested after a killing frost once annually from 2003 to 2005. Total biomass yield significantly increased with year at all locations. Switchgrass monocultures or mixtures containing switchgrass generally out-yielded big bluestem or indiangrass in monocultures or the binary mixture. Cellulose and hemicellulose concentrations were higher in 2004 and 2005 compared with 2003. Switchgrass or mixtures containing switchgrass tended to have less cellulose than either big bluestem or indiangrass. Results were more variable for total N, lignin, and ash. Switchgrass was the dominant component of all mixtures in which it was present while big bluestem was dominant when mixed with indiangrass. Indiangrass was maintained only in monocultures and declined over years when grown in mixtures at all locations. Our results indicated if biomass yield in the northern Great Plains is a primary objective, switchgrass should be a component of binary or tertiary mixtures that also contain big bluestem and/or indiangrass.  相似文献   

5.
The present study investigates the operational conditions for organosolvent pretreatment and hydrolysis of rice straw. Among the different organic acids and organic solvents tested, acetone was found to be most effective based on the fermentable sugar yield. Optimization of process parameters for acetone pretreatment were carried out. The structural changes before and after pretreatment were investigated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was higher for acetone pretreated biomass than that of the native. FTIR spectrum also exhibited significant difference between the native and pretreated samples. Under optimum pretreatment conditions 0.458 g of reducing sugar was produced per gram of pretreated biomass with a fermentation efficiency of 39%. Optimization of process parameters for hydrolysis such as biomass loading, enzyme loading, surfactant concentration and incubation time was done using Box–Benhken design. The results indicate that acetone pretreated rice straw can be used as a good feed stock for bioethanol production.  相似文献   

6.
Biomass (as dry weight and protein content), gut fluorescence, electron transfer system (ETS) and aspartate transcarbamylase (ATC) activities were studied in different size fractions (200–500, 500–1000 μm and 1–14 mm) in the Bransfield Strait (Antarctic Peninsula) during January 1993. Very low values of zooplankton biomass were observed in all the size classes studied. About 56% of total biomass was due to the large size fraction (1–14 mm) while the smallest one (200–500 μm) accounted for about 26%. Gut fluorescence values increased in relation to the size class considered, as expected, being the differences from the smaller to the highest size fractions of orders of magnitude. Calculated ingestion rates showed that about 60–80% of total zooplankton ingestion (<14 mm) was due to the smaller organisms. Higher average values and higher variability of specific ETS activity was observed in the smaller size fraction while no differences between size classes were observed for the specific ATC activity. Biomass, gut fluorescence, ETS and ATC activities were not significantly different between the Bellingshausen and Weddell waters, although higher standard deviation was normally found at the former area. With the restrictions of using the above indices to estimate physiological rates, potential grazing of mesozooplankton (<14 mm) accounted for a rather low portion (<10%) of the primary production. The index of growth showed high values, suggesting no food limitation of mesozooplankton. Therefore, other processes such as predation should account for the very low biomass found and for the fate of a large portion of primary production. Accepted: 26 March 2000  相似文献   

7.
8.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

9.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

10.
Cellulosic feedstocks for bioenergy differ in composition and processing requirements for efficient conversion to chemicals and fuels. This study discusses and compares the processing requirements for three lignocellulosic feedstocks??soybean hulls, wheat straw, and de-starched wheat bran. They were ground with a hammer mill to investigate how differences in composition and particle size affect the hydrolysis process. Enzyme hydrolysis was conducted using cellulase from Trichoderma reesei at 50°C and pH 5. Ground fractions were also subjected to dilute sulfuric acid treatment at 125°C, 15 psi for 30 min prior to cellulase treatment. Reducing particle size of biomass resulted in segregated components of feedstock. Grinding wheat straw to particle size <132 ??m resulted in measured lignin content from 20% to ??5% and reduced hemicellulose content. Reducing lignin content increased the effectiveness of enzyme hydrolysis of wheat straw. Particles sized <132 ??m exhibited the highest soluble sugar release upon hydrolysis for all three feedstocks studied. Hemicellulose digestion improved with dilute sulfuric acid treatment with residual hemicellulose content <5% in all three feedstocks after acid treatment. This enhanced the cellulase action and resulted in approximately 1.6-fold increase in sugar availability in de-starched wheat bran and ??1.5-fold for wheat straw and soybean hulls. Higher sugar availability in wheat bran after acid-mediated enzyme treatment correlated to higher ethanol yields during yeast fermentation compared with soybean hulls and wheat straw.  相似文献   

11.
Pleurotus ostreatus `Florida' was grown in submerged liquid culture. The biomass yield of the fungus, grown for 3 days in 2-liter fermentors, where the mycelial pellets measuring 5 mm in diameter were formed, was 11.7 g (dry weight)/liter. Comparing the chemical constituents of fruiting bodies produced on cotton straw and mycelial pellets revealed several similarities in total nitrogen, protein, glycogen, fatty acids, RNA, and ash content. Differences were observed in the contents of six amino acids. Although the total fatty acid content was similar, there were more saturated fatty acids in the mycelium. Cell wall composition, typical for basidiomycetes, was observed in both mycelium and fruiting bodies, with laminarin as the main polymer.  相似文献   

12.
Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box–Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 °C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value.  相似文献   

13.
The effect of the root-inoculum size and axuin concentration on growth of adventitious roots and accumulation of ginsenosides were studied during suspension cultures of ginseng (Panax ginseng C.A. Meyer). Of the various concentrations of indole-3-butyric acid (IBA) and γ-naphthaleneacetic acid (NAA) used as supplementary growth regulators along with Murashige and Skoog medium, 25 μM IBA was found suitable for lateral root induction and growth, as well as accumulation of ginsenosides. Inoculum size of 5 g L−1 was found suitable for optimal biomass (10.5 g L−1 dry biomass) and ginsenosides (5.4 mg g−1 DW) accumulation. Of the various length of root inocula tested (chopped to 1–3, 4–6, 7–10 mm and un-chopped), root inocula of 7–10 mm was found suitable for biomass and ginsenoside accumulation.  相似文献   

14.
The effect of different carbon, nitrogen sources and inducers on growth and ligninolytic activity by Morel mushroom Morchella crassipes was investigated. The maximum growth was observed in mineral salts broth containing glucose as the carbon source and sodium nitrate as the nitrogen source. Among the inducers, chemical inducers inhibited the growth whereas in natural substrates, growth was not affected much. Manganese peroxidase and lignin peroxidase activity were not detected in the medium with different carbon and nitrogen sources, whereas laccase activity varied depending on carbon source (0.7–3.48 U/ml). Among the inducers, natural inducers resulted in an increase in the enzyme activities. Maximum laccase activity was observed in rice straw (12. 6 U/ml) followed by ABTS (11.6 U/ml); Manganese peroxidase activity was maximum in rice straw (14.32 U/l) wheat straw (12.16 U/l) and phenol red (15 U/l) as the inducers, whereas for Lignin peroxidase activity, rice straw (22 U/l), wheat straw (16 U/l) and veratrylalcohol (20 U/l) served as the best inducers.  相似文献   

15.
The dynamics of phytoplankton biomass were studied in an Eastern Mediterranean semi-enclosed coastal system (Maliakos Gulf, Aegean Sea), over 1 year. In particular, chlorophyll a (chl a) was fractionated into four size classes: picoplankton (0.2–2 μm), nanoplankton (2–20 μm), microplankton (20–180 μm) and net phytoplankton (>180 μm). The spatial and temporal variation in dissolved inorganic nutrients and particulate organic carbon (POC) were also investigated. The water column was well mixed throughout the year, resulting in no differences between depths for all the measured parameters. Total chl a was highest in the inner part of the gulf and peaked in winter (2.65 μg l–1). During the phytoplankton bloom, microplankton and net phytoplankton together dominated the autotrophic biomass (67.2–95.0% of total chl a), while in the warmer months the contribution of pico- and nanoplankton was the most significant (77.5–93.4% of total chl a). The small fractions, although showing low chl a concentrations, were important contributors to the POC pool, especially in the outer gulf. No statistically significant correlations were found between any chl a size fraction and inorganic nutrients. For most of the year, phytoplankton was not limited by inorganic nitrogen concentrations. Electronic Publication  相似文献   

16.
Cell cultures of Commiphora wightii (Arnott.) Bhandari were grown in shake flasks and a bioreactor and an increase in guggulsterone accumulation up to 18 μg l−1 was recorded in cells grown in the production medium containing a combination of sucrose:glucose (4% total), precursors (phenylalanine, pyruvic acid, xylose, and sodium acetate), morphactin, and 2iP. A yield of 10 g l−1 biomass and ∼200 μg l−1 guggulsterone was recorded in a 3-l flask and in a 2-l stirred tank bioreactor compared with 6.6 g biomass and 67 μg l−1 guggulsterone in 250-ml flasks. Increased vessel size was correlated with increased biomass and guggulsterone accumulation. 2iP alone was not effective for biomass and guggulsterone accumulation in cell cultures of C. wightii.  相似文献   

17.
Aspects of the biology of Abra segmentum were investigated at low salinities in a Mediterranean coastal lagoon (Monolimni Lagoon, Northern Aegean Sea). Monthly samples were collected during the period from February 1998 to January 1999. Recruitment occurred from mid-spring to early autumn (0.3–5.7 psu) and recruits grew during summer and autumn (1.2–5.7 psu), while a major part vanished during next autumn, displaying a maximum life span of about 20 months. A positive correlation was found between the percentage of individuals having a shell length of ≤3.5 mm and temperature; age group 0 showed a growth rate of 0.97 mm per month, and the largest individual collected had a 19.76 mm shell length. The population density sharply increased during late spring (0.3–1.2 psu); this increase was followed by a decline during summer and, afterwards, a gradual increase up to late autumn. Secondary production calculated by the size–frequency method gave a mean annual density (n) of 3,357 individuals m−2, a mean annual biomass (B) of 21.98 g DW m−2, an annual production (P) of 73.72 g DW m−2 and a P:B ratio of 3.35. A comparison of the present data with available data of A. segmentum populations from higher salinity habitats revealed that this bivalve in the study area showed a life history pattern similar to that of other populations of the species and a comparatively high growth rate, maximum body size, n, B, P and P:B ratio. Our findings suggest that the studied aspects of A. segmentum biology could not be markedly affected by low salinities.  相似文献   

18.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

19.
Crustacean zooplankton data were compiled from long-term observational studies at seven large shallow Florida lakes, to determine whether there are general characteristics in regard to species composition, body size, and biomass. In particular, we examined whether patterns in body size and species richness fit empirical models developed by Stanley Dodson. The lakes included range in size from 125 to 1730 km2 and encompass mesotrophic to hyper-eutrophic conditions. We found that zooplankton biomass was strongly dominated by one species of calanoid copepod—Arctodiaptomus dorsalis. Large daphnids were absent, and Cladocera assemblages were dominated by small taxa such as Ceriodaphnia, Chydorus, and Eubosmina. The total number of species of pelagic cladocerans (8–12) was consistent with Dodson’s predictions based on lake area. The average size of crustacean zooplankton in Florida lakes is small in comparison with temperate communities. A. dorsalis is the smallest calanoid copepod in North America, and the mean length of Cladocera (0.6 mm) is consistent with Dodson’s results that size decreases from temperate to tropical zones. Total biomass of crustacean zooplankton was very low, ratios of zooplankton to phytoplankton biomass (0.01–0.1) are among the lowest reported in the literature, and the zooplankton displayed short-lasting early spring peaks in biomass. Cladocera were almost entirely absent in spring and summer. Factors known to occur in Florida lakes, which appear to explain these characteristics of biomass, include intense fish predation and high summer water temperature.  相似文献   

20.
This research adds to the limited data on coarse and fine root biomass for blue oak (Quercus douglasii Hook and Arn.), a California deciduous oak species found extensively throughout the interior foothills surrounding the Central Valley. Root systems of six blue oak trees were analyzed using three methods — backhoe excavation, quantitative pits, and soil cores. Coarse root biomass ranged from 7 to 177 kg per tree. Rooting depth for the main root system ranged from 0.5 to 1.5 m, with an average of 70% of excavated root biomass located above 0.5 m. Of the total biomass in excavated central root systems, primary roots (including burls) accounted for 56% and large lateral roots (> 20 mm diameter) accounted for 36%. Data from cores indicated that most biomass outside of the root crown was located in fine roots and that fine root biomass decreased with depth. At surface depths (0–20 cm), small-fine (< 0.5 mm diameter) roots accounted for 71%, large-fine (0.5–2.0 mm) for 25%, and coarse (> 2 mm) for 4% of total root biomass collected with cores. Mean fine root biomass density in the top 50 cm was 0.43 kg m−3. Fine root biomass did not change with increasing distance from the trees (up to approximately 5 m). Thus, fine roots were not concentrated under the tree canopies. Our results emphasize the importance of the smallest size class of roots (<0.5 mm), which had both higher N concentration and, in the area outside the central root system, greater biomass than large fine (0.5–2.0 mm) or coarse (> 2.0 mm) roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号