首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nuclear forward scattering of synchrotron radiation is used to determine the quadrupole splitting and the mean square displacement of the iron atom in deoxymyoglobin in the temperature range between 50 K and 243 K. Above 200 K an abnormally fast decay of the forward scattered intensity at short times after the synchrotron flash is observed, which is caused by protein-specific motions. The results strongly support the picture that protein dynamics seen at the position of the iron can be understood by harmonic motions in the low temperature regime while in the physiological regime diffusive motions in limited space are present. The shape of the resonance broadening function is investigated. An inhomogeneous broadening with a Lorentzian distribution indicating dipole interactions results in a better agreement with the experimental data than the common Gaussian distribution. Received: 30 August 1999 / Revised version: 22 October 1999 / Accepted: 6 December 1999  相似文献   

2.
13C nuclear magnetic resonance spectra have been obtained for variety of high-spin iron(III) porphyrin compounds and corresponding μ-oxo-bridged dimeric species. Large hyperfine shifts and significant line broadening are observed. The monomeric exhibit hyperfine shifts which are downfield with te exception of an upfield shift for the meso-carbon atom. Possible unpaired spin delocalization mechanisms and prospects for observing 13C NMR porphyrin resonances in high-spin ferrihemoproteins are discussed. Spectra reported here provide strategy for incorporation of 13C labels in hemoproteins either by biosynthetic or chemical means. The vinyl-CH2 resonances of iron(III) protoporphyrin IX located 260 parts per million downfield from tetramethylsilane are especially attractive from the standpoint of chemical labeling.  相似文献   

3.
Porphyromonas gingivalis acquires heme through an outer-membrane heme transporter HmuR and heme-binding hemophore-like lipoprotein HmuY. Here, we compare binding of iron(III) mesoporphyrin IX (mesoheme) and iron(III) deuteroporphyrin IX (deuteroheme) to HmuY with that of iron(III) protoporphyrin IX (protoheme) and protoporphyrin IX (PPIX) using spectroscopic methods. In contrast to PPIX, mesoheme and deuteroheme enter the HmuY heme cavity and are coordinated by His134 and His166 residues in a fully analogous way to protoheme binding. However, in the case of deuteroheme two forms of HmuY–iron porphyrin complex were observed differing by a 180° rotation of porphyrin about the α-γ-meso-carbon axis. Since the use of porphyrins either as active photosensitizers or in combination with antibiotics may have therapeutic value for controlling bacterial growth in vivo, it is important to compare the binding of heme derivatives to HmuY.  相似文献   

4.
The porphyrin and tryptophan fluorescence of sperm whale apomyoglobin complexed with protoporphyrin IX has been studied in the pH range 2-13. It has been shown that the fluorescence and absorption spectra of protoporphyrin incorporated into the heme crevice remain constant in the pH range 5.5-10.8 but change significantly at pH less than 5.5 and pH greater than 10.8, due to the acid and alkaline denaturation, respectively, of the complex accompanied by dissociation of protoporphyrin IX. At the same pH ranges, the quantum yield of tryptophanyl fluorescence increases sharply as a result of removal of protoporphyrin, acting as a quencher, from the complex. Other parameters of tryptophanyl fluorescence (maximum position, halfwidth and spectrum shape) change in the alkaline region as well. In the acidic pH range, these parameters change only at pH less than 4.3, indicating that the Trp surroundings are more stable to denaturation than the heme crevice region. Between pH 5.5 and 10.9, where the complex of apomyoglobin with protoporphyrin IX is in its native state, the main parameters of tryptophan fluorescence remain unchanged except for the ratio I325/I350 which diminishes at pH greater than 9.5. Its alteration precedes the alkaline denaturation of the complex and can be explained by a local conformational change induced by the break of the 'salt bridges' essential for the maintenance of the native Mb structure in the N-terminal region. The fluorescence data obtained for apomyoglobin, myoglobin and the complex between protoporphyrin IX and apomyoglobin enable one to compare their structures and to evaluate the role of the porphyrin macrocycle and the iron atom in the formation of the native myoglobin structure and its functioning.  相似文献   

5.
The role of hemin in the maintenance of protein synthesis in reticulocyte lysates was examined by comparing the effects of various porphyrins and metalloporphyrins on the protein kinase activity of the hemin-controlled repressor and on protein synthesis. The porphyrin requirements for maintenance of protein synthesis were relatively specific. Iron and cobalt metalloporphyrins sustained protein synthesis whereas other metalloporphyrins, metal-deficient porphyrins, and non-porphyrin precursor and degradation products of protoporphyrin IX were ineffective. These same compounds were examined for their effectiveness in inhibiting the protein kinase activity of the hemin-controlled repressor with initiation factor 2 (eIF-2). Most of the metalloporphyrins and porphyrins tested were inhibitory. The presence of the iron atom in the porphyrin was not essential for inhibition, but the maintenance of the integrity of the porphyrin ring was imperative. The porphyrins which inhibited the hemin-regulated protein kinase contained vinyl groups or ethyl groups, or were protonated in the 2- and 4-positions of the porphyrin ring, whereas those with bulky or acidic groups in these positions were ineffective. Precursor and degradation products of protoporphyrin IX and synthetic porphyrins modified at other positions had no effect on the enzyme. Both hemin and protoporphyrin IX inhibited phosphorylation of eIF-2 exogenously added to a reticulocyte lysate; however, hemin sustained protein synthesis in the lysate, whereas protoporphyrin IX did not. These results suggest that regulation of the protein kinase phosphorylating the alpha subunit of eIF-2 is not the only point at which hemin modulates protein synthesis in reticulocytes and reticulocyte lysates, since a correlation between inhibition of protein synthesis, inhibition of protein kinase activity, and phosphorylation of eIF-2 is not observed with all porphyrins.  相似文献   

6.
1. Iron protoporphyrin IX was required for the growth of H. influenzae. It could be replaced by protoporphyrin IX. When grown on protoporphyrin evidence was obtained for the presence of Fe porphyrin in the organism. It was concluded that the organism could insert iron into the protoporphyrin ring. 2. In the smooth strains, other porphyrins containing no iron such as deutero-, hemato-, meso-, and coproporphyrins could not replace protoporphyrin for growth. Since protoporphyrin has two vinyl groups which other porphyrins lack, it was concluded that the two vinyl groups were essential for growth. 3. When porphyrins lacking vinyl groups were converted chemically into iron porphyrins and then supplied to the organisms it was found that these iron porphyrins supported growth. It was concluded that the "smooth" organisms were able to insert iron only into the porphyrin containing the vinyl groups; i.e., protoporphyrin. One function of the vinyl groups then was to permit iron to be inserted biologically into the porphyrin ring. 4. An anomalous behavior in the rough Turner strain was observed and discussed. This organism was able to insert iron into mesoporphyrin at low concentrations but was inhibited by this compound at higher concentrations. In all other reactions with the porphyrins this rough strain behaved in the same was as did the smooth strains. 5. All strains which were grown on iron porphyrins lacking vinyl groups could not reduce nitrate to nitrite. When grown on protoporphyrin or Fe protoporphyrin reduction of nitrate occurred. It was concluded that the nitrate-reducing mechanism required the presence of the vinyl groups either for its formation or function. 6. The porphyrins lacking iron and lacking vinyl groups inhibited the growth of H. influenzae on Fe protoporphyrin. The inhibition between a porphyrin and Fe protoporphyrin was a competitive one. It was suggested that the porphyrin inhibited the growth-promoting properties of Fe protoporphyrin by attaching on to a particular apoprotein, thus preventing the formation of a heme catalyst. Likewise, competition between two growth-promoting Fe porphyrins for apoenzymes could be shown to occur. 7. Protoporphyrin and Fe protoporphyrin supported growth. When their propionic acid side chains were esterified they no longer supported growth. It was suggested that the esterified carboxyl groups could not attach to the specific apoproteins to form the heme enzymes and so could not act to support growth. For the same reason the inhibitory action of porphyrins lacking vinyl groups could be prevented by esterifying their propionic acid groups.  相似文献   

7.
Cells of the ciliate Tetrahymena pyriformis GL overproduce and accumulate massive quantities of the heme intermediate, protoporphyrin IX. Protoporphyrin is localized intracellularly in discrete membranous compartments. The amount of porphyrin stored in the cell changes dramatically as cells progress through the growth cycle. Porphyrin overproduction is stimulated by δ-aminolevulinic acid, but only during the mid-stationary phase. Overproduction of protoporphyrin IX apparently results from an increase, late in the growth cycle, of activities subsequent to δ-aminolevulinic acid synthetase. Feedback inhibition in the pathway by accumulated protoporphyrin IX does not occur. The presence of Co2+ completely inhibits accumulation of protoporphyrin IX in a manner reversed by δ-aminolevulinic acid. Sn4+ stimulates protoporphyrin IX accumulation in the culture.  相似文献   

8.
Mössbauer parameters of frozen solutions of protoporphyrin IX iron(II) (containing either 2- methyl-piperidine or mercaptoethanol as the fifth iron ligand) that were exposed to oxygen before freezing are similar to those of oxyhaemoglobin. These results are discussed in relation to known porphyrin iron(II) chemistry.  相似文献   

9.
Nitridomanganese(V) protoporphyrin IX was prepared by hypochlorite oxidation of the corresponding manganese(III) protoporphyrin IX derivative in the presence of ammonium ion and by photolysis of the corresponding azidomanganese(III) complex. Myoglobin and horseradish peroxidase containing this novel protoporphyrin derivative were prepared for the first time. These remarkably stable species were examined by electronic absorption, electron paramagnetic resonance, and resonance Raman spectroscopies. The MnV-N stretching modes of the nitridomanganese(V)-substituted myoglobin and horseradish peroxidase were observed at 1010 and 1003 cm-1, respectively, by resonance Raman spectroscopy, while the MnV-N stretching frequency for nitridomanganese(V) protoporphyrin IX in 0.1 N aqueous NaOH was found at 1046 cm-1. The equilibrium dissociation energies of MnV-N bonds in these complexes were estimated from vibrational overtone spacings by introducing the Morse potential energy function, were found to be around 4.5 eV, and seemed independent of the surroundings of the manganese porphyrin, although its force constant decreased from 7.3 to 6.7 mdyn/A upon incorporation into apoprotein. The porphyrin ring modes of these nitridomanganese(V) derivatives were influenced greatly upon incorporation into apoproteins, suggestive of the occurrence of porphyrin core expansion. Upon this core expansion the MnV center moves into the mean plane of porphyrin plane, but the access of nitrido (N) toward MnV is restricted due to a steric hindrance from porphyrin pyrrole nitrogens. The resulting stretched MnV-N bond might cause lowering of the MnV-N stretching frequency upon incorporation into apoprotein.  相似文献   

10.
Using the method of magneto-optical rotation (MOR) various porphyrin derivatives, hemin and heme compounds, and a number of methemoglobin complexes were investigated. The spectra were recorded from 450-600 nm; with methemoglobin also in the Soret region. 1. The metalfree porphyrin derivatives (deutero-, meso-, hemato- and protoporphyrins) were measured in strongly acidic aqueous solution. The derivatives thus present as di-cations yield highly resolved MORspectra, where the Q-bands (Oo leads to; Oo leads to 1) originated from the pi-pi transitions of the porphyrin display the curve shape characteristic of an A-term, this proving the presence of the D4h symmetry. An exception is the protoporphyrin, in which the pi-electron system of the porphyrin is perturbed by the influence of pi-electrons of the vinyl group, causing poor resolution, line broadening, and shift of the Q-bands into the lower-energy spectral region. 2. With iron porphyrins (hemin, heme and their complexes) the charge of the iron and the nature of axial ligands determine the position and intensity of the O-bands in the MOR spectrum. Low-spin complexes have a higher symmetry than the high-spin complexes. Whereas with hemin (S = 5/2), the iron located outside the heme plane strongly disturbs the porphyrin pi-system, the high symmetry of porphyrin is greatly retained in the case of heme. This can be explained by the enhanced binding distance between the bivalent iron and the porphyrin to great for a strong coupling between the microsymmetry of the iron and the macrosymmetry of the porphyrin pi-system.  相似文献   

11.
The aim of this work is the synthesis of a new family of glycosylated porphyrins in which the sugar moieties are linked to the tetrapyrrole ring by a thioglycosidic bond. Two series have been designed. The first one corresponds to meso-aryl porphyrin derivatives. The second one has been obtained from protoporphyrin IX derivatization. Aryl-porphyrins were prepared from tristolyl o- and p-hydroxyporphyrins followed by bromoallylation and thioglycosylation with peracetylated S-glucose, mannose and galactose and deprotection. The other series has been synthesized from protoporphyrin IX dimethylester with a regioselective glycosylation of terminal alkenyl carbon. The UV-visible, NMR and MALDI mass spectra are presented. Photocytotoxicities of the synthesized compounds against K562 chronic leukaemia cell line has been evaluated.  相似文献   

12.
An investigation of the behavior of protoporphyrin IX, deuteroporphyrin IX, haematoporphyrin IX and coproporphyrin III in aqueous solution revealed extensive and complex aggregation processes. Protoporphyrin appears to be highly aggregated under all conditions studied. At concentrations below 4 muM, aggregation of deutero-, haemato- and coproporphyrin is probably restricted to dimerization. At approx. 4muM each of these three porphyrins exhibits sharp changes in spectra consistent with a "micellization" process to form large aggregates of unknown size. This critical concentration increases with increasing temperature and pH, but is not very sensitive to variation in ionic strength. Temperature-jump kinetic studies on deuteroporphyrin also imply an initial dimerization process, the rate constants for which are comparable with those for various synthetic porphyrins, followed by a further extensive aggragation. The ability of a particular porphyrin to dimerize appears to parallel that of the corresponding iron(III) complexes (ferrihaems), although it is thought that ferrihaems do not exhibit further aggregation under these conditions.  相似文献   

13.
14.
Structure of a stable form of sulfheme   总被引:1,自引:0,他引:1  
A stable green heme was extracted from ferric cyanosulfmyoglobin after it had undergone an internal conversion reaction. After iron removal and conversion to the methyl ester, the resulting green porphyrin was purified by high-pressure liquid chromatography. Visible, 1H NMR, and mass spectrometric studies provided evidence to identify the substituents of the porphyrin. Nuclear Overhauser enhancements enabled an assignment of the single modified pyrrole. Substituent positions 1, 2, 5, 6, 7, and 8 have the original protoporphyrin IX substituents. At ring B, the 4-vinyl group has cyclized with a single sulfur atom to form a fifth ring with a 2,5-dihydrothiophene type of structure.  相似文献   

15.
In this work we study the temperature dependence of the Soret band lineshape of deoxymyoglobin and deoxyhemoglobin, in the range 300–20 K. To fit the measured spectra we use an approach originally proposed by Champion and coworkers (Srajer et al. 1986; Srajer and Champion 1991). The band profile is modelled as a Voigt function that accounts for the coupling with low frequency vibrational modes, whereas the coupling with high frequency modes is responsible for the vibronic structure of the spectra. Moreover, owing to the position of the iron atom out of the mean heme plane, inhomogeneous broadening brings about a non-Gaussian distribution of 0–0 electronic transition frequencies. The reported analysis enables us to isolate the various contributions to the overall bandwidth, and their temperature dependence points out the relevance of low frequency vibrations and of large scale anharmonic motions starting at temperatures higher than 170 K. Information on the mean iron-heme plane distance and on its temperature dependence, as well as on the heme pocket conformational disorder, is also obtained.Abbreviations Cc Carbon monoxide - Hb Human deoxyhemoglobin A - HbCO human carbonmonoxyhemoglobin A - SWMb spermwhale deoxymyoglobin - SWMbCO spermwhale carbonmonoxymyoglobin - HbO2 human oxyhemoglobin A - SWMb3+-H2O spermwhale aquometmyoglobin  相似文献   

16.
A continuous spectrofluorimetric assay for determining ferrochelatase activity has been developed using the physiological substrates ferrous iron and protoporphyrin IX under strictly anaerobic conditions. In contrast to heme, the product of the ferrochelatase-catalyzed reaction, protoporphyrin IX is fluorescent, and therefore the progress of the reaction can be monitored by following the decrease in protoporphyrin fluorescence intensity (with excitation and emission wavelengths at 505 and 635 nm, respectively). This continuous fluorimetric assay detects activities as low as 0.01 nmol porphyrin consumed min(-1), representing an increase in sensitivity of up to two orders of magnitude over the currently used, discontinuous assays. The determination of the steady-state kinetic parameters of ferrochelatase yielded K(m)(PPIX)=1.4+/-0.2 microM, K(m)(Fe(2+))=1.9+/-0.3 microM, and k(cat)=4.0+/-0.3 min(-1). In addition to its applicability for acquisition of kinetic data to characterize ferrochelatase and recombinant variants, this new method should permit detection of low concentrations of ferrochelatase in biological samples.  相似文献   

17.
Reaction betwenn molecular oxygen and polystyrene covalently bonded Co(II) protoporphyrin IX complex, which was prepaired by the incorporation of a cobaltous ion into the metal-free porphyrin polymer, was studied in the presence of N-ethylimidazole by measuring visible absorption and electron spin resonance spectra. It was found that the complex forms a monomeric oxygen adduct reversibly at low temperature dependent on oxygen pressure. In the presence of molecular oxygen, a new electron spin resonance signal due to the oxygen complex at giso=2.02 shows no superhyperfine splitting structure in fluid toluene solution even at ?80 °C, but it was observed in frozen toulene glass solution at ?120°C, The oxygen adducts of the complexes between C0(II) protoporphyrin IX dimethyl ester and N-ethylimidazole and copoly(styrene-N-vinylimidazole) showed eight resolved superhyperfine splitting at ?40 and ?60°C, respectively. The polymer covalently bonded Co(II) complex with N-ethylimidazole was oxidized at room temperature under oxygen atmosphere. It was suggested that a Co(II) porphyrin–oxygen adduct with an axial ligand may be oxidised monomolecularly at high temperature.  相似文献   

18.
Crystallographic studies of L-chain horse spleen apoferritin (HSF) co-crystallized with Pt-hematoporphyrin IX and Sn-protoporphyrin IX have brought significant new insights into structure-function relationships in ferritins. Interactions of HSF with porphyrins are discussed. Structural results show that the nestling properties into HSF are dependent on the porphyrin moiety. (Only protoporphyrin IX significantly interacts with the protein, whereas hematoporphyrin IX does not.) These studies additionally point out the L-chain HSF ability to demetalate metalloporphyrins, a result which is of importance in looking at the iron storage properties of ferritins. In both compound investigated (whether the porphyrin reaches the binding site or not), the complexation appears to be concomitant with the extraction of the metal from the porphyrin. To analyze further the previous results, a three-dimensional alignment of ferritin sequences based on available crystallographic coordinates, including the present structures, is given. It confirms a high degree of homology between these members of the ferritin family and thus allows us to emphasize observed structural differences: 1) unlike L-chain HSF, H-chain human ferritin presents no preformed binding site; and 2) despite the absence of axial ligands, and due to the demetalation, L-chain HSF is able to host protoporphyrin at a similar location to that naturally found in bacterioferritin.  相似文献   

19.
Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV–vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.  相似文献   

20.
Four mutants of maize (Zea mays L.) defective in chlorophyll biosynthesis have been analyzed with regard to the sites of their lesions and their effects on chloroplast development. Two yellow mutants, which accumulate no detectable porphyrin precursors when grown in darkness, are defective in the conversion of protoporphyrin IX to magnesium protoporphyrin. Etioplasts of these mutants may develop elaborate lamellar membrane systems, but prolamellar bodies are never observed. Two mutants, which are necrotic when grown under illumination, develop normal (non-necrotic) leaf tissue in the dark and accumulate a small amount of magnesium protoporphyrin monomethyl ester, corresponding approximately to the amount of protochlorophyllide accumulated by normal plants. The etioplasts of these mutants contain noncrystalline bodies. The implications of these observations with respect to chloroplast development are discussed.Journal Paper No. J-9136 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa Project No. 2035  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号