首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
目的探讨高密度微团(Micromass)的细胞培养方法对人骨关节炎软骨细胞终末期成熟分化的作用影响。方法临床获取人骨关节炎关节软骨组织,分离骨关节炎软骨细胞,分别进行低密度单层培养和高密度微团培养,隔日细胞换液1次。每2日倒置显微镜观察细胞形态的变化;碱性磷酸酶(ALP)染色方法检测ALP的分泌;RT-PCT方法检测细胞内Col2、Aggrecan、ALP和MMP-13等因子mRNA的表达。结果人骨关节炎软骨细胞具有自发性向终末期成熟分化的特征,在相同时间点,Micromass培养的软骨细胞与低密度单层培养的细胞相比,更具有软骨细胞的形态特征;ALP染色显示,Micromass培养的细胞内ALP染色强度明显减弱;RT-PCT显示,Micromass培养的细胞内Col2和Aggrecan因子mRNA的表达显著提高(P0.05);ALP和MMP-13因子mRNA的表达显著降低(P0.05)。结论高密度微团培养法抑制人骨关节炎软骨细胞过快的成熟分化,更好的维持了细胞的软骨细胞表型。  相似文献   

2.
目的 探讨骨形态发生蛋白2(BMP2)在甲状旁腺素(PTH)促进成骨细胞分化过程中的重要介导作用.方法培养MC3T3-E1细胞,分为4组:1)盐水对照组;2)PTH组;3)6-[4-[2-(1-哌啶基)乙氧基]苯基]-3-(4-吡啶基)吡唑并[1,5-a]嘧啶 (Dorsomorphin) 组;4) PTH+Dorsomorphin组.Real-time PCR法和Westernblot方法检测细胞BMP2、BMP2下游基因和成骨因子的表达,碱性磷酸酶(ALP)染色方法检测细胞ALP的活性;双荧光素酶报告基因检测方法检测12xSBE-OC荧光素酶的活性.结果:PTH组BMP-2、成骨因子的表达及其12xSBE-OC荧光素酶的活性,明显高于盐水对照组.Dorsomorphin组和PTH+Dorsomorphin组BMP-2、BMP-2下游基因和成骨因子的表达,均明显低于盐水对照组;但其表达于两组间无明显差别.结论 BMP2介导PTH促进成骨细胞的分化,PTH可通过上调BMP2的表达,提高其功能,促进成骨细胞的成熟分化.  相似文献   

3.
4.
研究淫羊藿素在GDF-5诱导BMSCs成软骨分化过程中的作用。全骨髓贴壁法分离培养SD大鼠骨髓间充质干细胞(BMSCs),取P3代细胞随机分成4组:对照组,淫羊藿素(Icaritin)组,Growth differentiation factor 5(GDF-5)组,Icaritin+GDF-5联合组。连续诱导培养14 d,倒置相差显微镜观察细胞形态,Alcian Blue染色检测细胞的蛋白聚糖改变,RT-PCR检测软骨分化标记基因Aggrecan、COL2、Sox9及COL1的表达情况,Western Blot检测COL2和COL1蛋白表达水平。结果提示,与对照组及GDF-5组相比,Icaritin+GDF-5联合组蛋白聚糖染色更深;软骨分化标记基因Aggrecan、COL2、Sox9明显增加;Ⅱ型胶原蛋白表达量均明显增加。淫羊藿素能够促进GDF-5诱导BMSCs成软骨分化。  相似文献   

5.
研究淫羊藿素在GDF-5诱导BMSCs成软骨分化过程中的作用。全骨髓贴壁法分离培养SD大鼠骨髓间充质干细胞(BMSCs),取P3代细胞随机分成4组:对照组,淫羊藿素(Icaritin)组,Growth differentiation factor 5(GDF-5)组,Icaritin+GDF-5联合组。连续诱导培养14 d,倒置相差显微镜观察细胞形态,Alcian Blue染色检测细胞的蛋白聚糖改变,RT-PCR检测软骨分化标记基因Aggrecan、COL2、Sox9及COL1的表达情况,Western Blot检测COL2和COL1蛋白表达水平。结果提示,与对照组及GDF-5组相比,Icaritin+GDF-5联合组蛋白聚糖染色更深;软骨分化标记基因Aggrecan、COL2、Sox9明显增加;Ⅱ型胶原蛋白表达量均明显增加。淫羊藿素能够促进GDF-5诱导BMSCs成软骨分化。  相似文献   

6.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

7.
该实验观察白藜芦醇(Resveratrol,Resv)对兔关节软骨细胞去分化现象的作用并探讨其可能的机制。首先,在无菌条件下取4周龄兔关节软骨细胞,行软骨细胞鉴定后将细胞随机分成5组:空白组、0μmol/L Resv组、2.5μmol/L Resv组、5μmol/L Resv组和10μmol/L Resv,体外单层培养传代至第5代。分别取P1、P3、P5代细胞在倒置相差显微镜下观察细胞形态变化,倒置相差显微镜下观察到各组P1代软骨细胞形态基本一致,P3、P5代2.5μmol/L Resv组细胞形态变化不大,其余各组细胞出现胞体变大,胞浆变淡,镜下胞核不明显等衰老的形态变化;Alcian Blue染色检测蛋白聚糖(Aggrecan)含量和β-半乳糖苷酶染色检测衰老软骨细胞,各组P1代细胞Alcian Blue染色和β-半乳糖苷酶染色无明显差别,P3、P5代2.5μmol/L白藜芦醇组较其他组明显深染、衰老软骨细胞数明显减少;RT-PCR检测蛋白多糖(Aggrecan),沉默信息调节因子1(SIRT1),抑癌基因p53、p21以及P16的表达,2.5μmol/L Resv组的Aggrecan和SIRT1基因表达明显上调,P53、P21及P16基因表达显著下调。综上所述:低浓度白藜芦醇(2.5μmol/L)可能通过上调SIRT1,下调P53、P21、P16基因的表达抑制软骨细胞去分化的现象。  相似文献   

8.
本研究旨在将建立的马(Equuscaballus)骨髓间充质干细胞诱导分化为成骨细胞和软骨细胞。通过原代细胞培养获取马的骨髓间充质干细胞,并对第3代(P3)纯化细胞进行干细胞特性鉴定,之后诱导其向不同细胞分化并对诱导分化的细胞进行染色和特异性基因表达的鉴定。实验结果显示,获得的马骨髓细胞表达了干细胞转录因子和间充质干细胞表面标记物,确定获得的细胞为马骨髓间充质干细胞。P3代细胞经诱导培养后由长梭形转变为"骨结节"形态的成骨细胞和"铺路石"形态的软骨细胞。茜素红将诱导的成骨细胞团染成红色,并随着时间的递增红色"骨结节"逐步增大;阿尔新蓝则将蛋白聚糖和透明质酸等含量丰富的诱导细胞染为蓝色,并且随着诱导天数的增加被染成蓝色的软骨细胞逐渐增多,而对照组细胞未见着色。实时荧光定量PCR检测发现,成骨细胞中Col和ALPL基因的表达量随诱导时间的延长发生明显变化;普通PCR结果显示,在诱导的软骨细胞中扩增获得了collagenⅡ、aggrecan和Sox9软骨特异基因,而对照组细胞不表达特异基因。综上所述,本实验建立了马骨髓间充质干细胞并成功将其诱导分化为成骨细胞和软骨细胞,为骨组织缺损修复和软骨...  相似文献   

9.
童迅  贠喆  张栋  赵新文  曾照辉  于洋  马保安 《生物磁学》2013,(24):4648-4653
摘要目的:研究人正常软骨细胞及骨关节炎软骨细胞的体外分离、培养及鉴定方法,对其生物学特性进行对照并评价其生物学活性。方法:取人创伤性截肢与骨关节炎全膝置换的无菌膝关节软骨,采用两步酶消化法分离培养人关节软骨细胞,并进行传代培养。通过倒置相差显微镜下观察细胞形态,绘制生长曲线,测细胞增殖,甲苯胺蓝染色及Ⅱ型胶原免疫组织化学染色对细胞进行对照研究。结果:骨关节炎软骨细胞形态似成纤维细胞,生长速度明显较正常软骨细胞慢。MTT测细胞增殖显示,第2.4、6代骨关节炎软骨细胞在相同时间点大都比同代正常软骨细胞增殖速度慢(P〈0.05)。甲苯胺蓝及Ⅱ型胶原免疫组化染色显示,骨关节炎软骨细胞染色较正常软骨细胞浅,经多次传代后基本无着色。结论:正常软骨细胞5代以内细胞生长良好,生物学特性明显,5代以后出现去分化现象。骨关节炎软骨细胞增殖慢,生物学特征退变旱,符合软骨细胞退变的表现。这为骨关节炎在软骨细胞水平的研究提供了实验基础。  相似文献   

10.
重组人干扰素β(rhIFN-β)是通过基因表达的一种糖蛋白,具有抗病毒、抗肿瘤和免疫调节作用,虽有研究表明其他亚型干扰素如干扰素γ对细胞增殖和分化有一定的作用,但rh IFN-β对人骨髓间充质干细胞(hMSCs)诱导分化的影响尤其是成软骨细胞定向分化的研究尚少。文中采用成球法研究在常规TGF-β3诱导分化培养基中添加重组IFN-β1a后对诱导hMSCs分化成软骨球的影响。hMSCs经诱导分化后,收集软骨球,通过定量检测糖胺多糖(GAG)含量、软骨球形态测定、Alcian Blue组织染色、Real-time PCR和Western blotting检测Sox9和CollangenⅡ的表达。结果显示,在常规TGF-β3诱导分化培养基中添加100 ng/mL IFN-β1a能显著提高GAG含量,增大软骨球尺寸,促进聚集蛋白聚糖形成,上调Sox9和CollangenⅡ的表达。研究结果表明,重组人IFN-β1a能够与TGF-β3联合作用促进h MSCs成软骨细胞定向分化。  相似文献   

11.
This study investigated the involvement of CNP-3, chick homologue for human C-type natriuretic peptide (CNP), in TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells (MSCs). Chondrogenic differentiation of MSCs in pellet cultures was induced by TGF-β1. Chondrogenic differentiation and glycosaminoglycan synthesis were analyzed on the basis of basic histology, collagen type II expression, and Alcian blue staining. Antibodies against CNP and NPR-B were used to block their function during these processes. Results revealed that expression of CNP-3 and NPR-B in MSCs were regulated by TGF-β1 in monolayer cultures at mRNA level. In pellet cultures of MSCs, TGF-β1 successfully induced chondrogenic differentiation and glycosaminoglycan synthesis. Addition of CNP into the TGF-β1 supplemented chondrogenic differentiation medium further induced the glycosaminoglycan synthesis and hypertrophy of differentiated chondrocytes in these pellets. Pellets induced with TGF-β1 and treated with antibodies against CNP and NPR-B, did show collagen type II expression, however, Alcian blue staining showing glycosaminoglycan synthesis was significantly suppressed. In conclusion, CNP-3/NPR-B signaling may strongly be involved in synthesis of glycosaminoglycans of the chondrogenic matrix and hypertrophy of differentiated chondrocytes during TGF-β1 induced chondrogenic differentiation of MSCs.  相似文献   

12.
Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.  相似文献   

13.
Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes including Mmp2, Mmp9, Mmp13, Adamts4 and Adamts5 was downregulated following Icariin treatment for 14 days. In a differentiation assay using bone marrow mesenchymal stem cells (MSCs) carrying HIF-1α floxed allele, the promotive effect of Icariin on chondrogenic differentiation is largely decreased following Cre recombinase-mediated deletion of HIF-1α in MSCs as indicated by Alcian blue staining for proteoglycan synthesis. In an alginate hydrogel 3D culture system, Icariin increases Safranin O positive (SO+) cartilage area. This phenotype is accompanied by upregulation of HIF-1α, increased proliferating cell nuclear antigen positive (PCNA+) cell numbers, SOX9+ chondrogenic cell numbers, and Col2 expression in the newly formed cartilage. Coincide with the micromass culture, Icariin treatment upregulates mRNA levels of Sox9, Col2α1, aggrecan and Col10α1 in the 3D cultures. We then generated alginate hydrogel 3D complexes incorporated with Icariin. The 3D complexes were transplanted in a mouse osteochondral defect model. ICRS II histological scoring at 6 and 12 weeks post-transplantation shows that 3D complexes incorporated with Icariin significantly enhance articular cartilage repair with higher scores particularly in selected parameters including SO+ cartilage area, subchondral bone and overall assessment than that of the controls. The results suggest that Icariin may inhibit PHD activity likely through competition for cellular iron ions and therefore it may serve as an HIF-1α activator to promote articular cartilage repair through regulating chondrocyte proliferation, differentiation and integration with subchondral bone formation.  相似文献   

14.
Common in vitro protocols for chondrogenesis of mesenchymal stem cells (MSCs) induce an inadequate, hypertrophic differentiation cascade reminiscent of endochondral bone formation. We aimed to modify chondrogenic protocols in order to identify potent inducers, promotors, and inhibitors to achieve better chondrogenesis. Nine factors suspected to stimulate or inhibit chondrogenesis were used for chondrogenic in vitro induction of MSC. Differentiation was assessed by immunohistochemistry, alcian‐blue staining, qRT‐PCR, and quantification of alkaline phosphatase (ALP) activity. Pre‐differentiated pellets were transplanted subcutaneously into SCID mice to investigate stable cartilage formation. Transforming growth factor (TGF)‐β was always required for chondrogenic differentiation and deposition of a collagen‐type‐II‐positive extracellular matrix, while bone morphogenetic protein (BMP)‐2, ‐4, ‐6, ‐7, aFGF, and IGF‐I (10 ng/ml) were alone not sufficiently inductive. Each of these factors allowed differentiation in combination with TGF‐β, however, without preventing collagen type X expression. bFGF or parathyroid hormone‐like peptide (PTHrP) inhibited the TGF‐β‐responsive COL2A1 and COL10A1 expression and ALP induction when added from day 0 or 21. In line with a reversible ALP inhibition, in vivo calcification of pellets was not prevented. Late up‐regulation of PTH1R mRNA suggests that early PTHrP effects may be mediated by a receptor‐independent pathway. While TGF‐β was a full inducer, bFGF and PTHrP were potent inhibitors for early and late chondrogenesis, seemed to induce a shift from matrix anabolism to catabolism, but did not selectively suppress COL10A1 expression. Within a developmental window of collagen type II+/collagen type X? cells, bFGF and PTHrP may allow inhibition of further differentiation toward hypertrophy to obtain stable chondrocytes for transplantation purposes. J. Cell. Physiol. 223: 84–93, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We investigated the influence of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). During chondrogenic induction, MSCs combined with polyglycolic acid (PGA) were cultured by static culture or microgravity rotating culture and chondrocyte formation was confirmed by toluidine blue staining. Furthermore, the mRNA and protein expressions of a specific cartilage extracellular matrix protein (collagen type II and Aggrecan) were evaluated by real-time RT-PCR and western blot, respectively. Toluidine blue staining indicated the OD values of proteoglycans semi-determination were higher in the microgravity rotating culture group than the static culture group. Following chondrogenic induction, mRNA and proteins of collagen type II and Aggrecan were more significantly expressed in cells of the microgravity rotating culture group compared with the controls. Compared with routine three-dimensional static culture, the microgravity rotating culture system was more effective for the construction of tissue-engineered cartilage in vitro.  相似文献   

16.
Human bone marrow-derived mesenchymal stem cells (MSCs) have been shown to differentiate into distinct mesenchymal tissues including bone and cartilage. The capacity of MSCs to replicate undifferentiated and to mature into cartilaginous tissues suggests these cells as an attractive cell source for cartilage tissue engineering. Here we show that the stimulation of human bone marrow-derived MSCs with recombinant bone morphogenetic protein-2 (BMP2) results in chondrogenic lineage development under serum-free conditions. Histological staining of proteoglycan with Alcian blue and immunohistochemical staining of cartilage-specific type II collagen revealed the deposition of typical cartilage extracellular matrix components. Semi-quantitative real-time gene expression analysis of characteristic chondrocytic matrix genes, such as cartilage link protein, cartilage oligomeric matrix protein, aggrecan, and types I, II, and IX collagen, confirmed the induction of the chondrocytic phenotype in high-density culture upon stimulation with BMP2 and transforming growth factor-beta3 (TGFbeta3). Histologic staining of mineralized extracellular matrix with von Kossa, immunostaining of type X collagen (typical for hypertrophic chondrocytes), and gene expression analysis of osteocalcin and adipocyte-specific fatty acid binding protein (aP2) further documented that BMP2 induced chondrogenic lineage development and not osteogenesis and/or adipogenesis in human MSCs. These results suggest BMP2 as a promising candidate for tissue engineering approaches regenerating articular cartilage on the basis of mesenchymal progenitors from bone marrow.  相似文献   

17.
高杰  韩建伟  关凯  杨彤涛  李放 《生物磁学》2013,(30):5855-5859
目的:研究miRNAs在人骨髓来源间充质干细胞软骨诱导分化过程中的表达情况。方法:以从骨髓中分离培养的MSCs及软骨诱导培养后的细胞为实验对象,利用基因芯片检测miRNAs的表达情况,由SAM分析得到MSCs较其诱导培养细胞中差异表达的miRNAs,再进行生物信息学分析。结果:①分离培养出的MSCs经软骨诱导培养21天后,已具有软骨细胞特性,经芯片检测并SAM分析,软骨诱导培养的细胞较MSCs高表达的miRNAs有6个:hsa-miR-572、hsa-miR-130b、hsa-miR-193b、hsa-miR-28、hsa-miR-152、hsa-miR-560;软骨诱导培养的细胞较MSCs低表达的miRNAs有2个:hsa-miR-424、hsa-miR-122a。②利用TargetScan预测其靶基因,并行生物信息学分析,其中hsa-miR-130b、hsa-miR-193b、hsa-miR-152及hsa-miR-424的预测靶基因中多为参与细胞分化、骨形成、软骨形成及干细胞表型相关的基因。结论:hsa-miR-130b、hsa-miR-193b、hsa-miR-152和hsa-miR-424等对人骨髓来源间充质干细胞的软骨分化起着重要调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号