首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the analysis of the measured radii of gyration of the RNA (Rg = 6.6 +/- 0.3 nm) and protein (Rg = 10.2 +/- 0.5 nm) components of the 50-S subparticle of Escherichia coli ribosomes it is concluded that proteins containing a large amount of hydrodynamically bound water are located on the periphery of the tightly packed RNA. We found that the common features of the measured X-ray scattering curves of the E. coli 70-S ribosome, its 30-S and 50-S subparticles and wheat 80-S ribosomes in the region of scattering angles corresponding to scattering vectors mu from 1 to 5 nm-1 reflect features of the RNA compact packing. A hypothesis is proposed that the compact packing of RNA helices in the range of Bragg distances of 4.5--2.0 nm is a general structural feature of all ribosomal particles.  相似文献   

2.
The hypothetic model of reciprocal spatial arrangement of 18 from 21 proteins in the E. coli 30S ribosomal subparticle is suggested. The model is based on conception of the 16S R-A molecule macrostrand which is the right superhelix in the subparticle composition. Macrohelix's biopolarity against single-stranded sites of RNA and its small width result in that proteins binding with single-stranded RNA organized in chain, one-number sequence. The double helixes uniting the corresponding one single-stranded sites of RNA play the role of rigid transmission between them. So, in the course of subparticles reconstruction from RNA and proteins the spatially uncoupled proteins can interact without its direct contact. The model takes into consideration the vast amount of information.  相似文献   

3.
Summary Enzymatic digestion of35S ribosomal protein with pronase yielded 0.14 molar % of the amino acids as N-formylmethionine. Analysis showed that approximately two polypeptide chains in the protein of the 30 S subparticle and approximately nine in the 50 S subparticle start with N-formylmethionine.  相似文献   

4.
Neutron scattering curves of the small and large subparticles of Escherichia coli ribosomes are presented over a wide range of scattering angles and for several contrasts. It was verified that the native ribosome structure was not affected by 2H2O in the buffer. The reliability of the neutron scattering curves, obtained in H2O buffer, was established by X-ray scattering experiments on the same material.The non-homogeneous distribution of RNA and protein in the subparticles of E. coli ribosomes is confirmed, with RNA predominantly within the particle and protein predominantly on its periphery. The distances between the centres of gravity of the RNA and protein components do not exceed 25 Å and 30 Å, in the large and small subparticles, respectively.The volume occupied by the RNA within the large and small subparticles is determined. The ratio of the “dry” volume of the RNA to the occupied volume is found to be 0.56; it is the same in both subparticles. Such packing of RNA is characteristic of single helices of ribosomal RNA at their crystallization and of the helices in transfer RNA crystals. A conclusion is drawn that RNA in ribosomes is in a similar state.Experimental scattering curves for the small subparticle depend significantly on the contrast in the angular region in which the scattering is mainly determined by the particle shape. The scattering curve, as infinite contrast is approached, is similar to that calculated for the particle as observed by electron microscopy. Thus, the long-existing contradiction between electron microscopy data (an elonggated particle with an axial ratio 2:1) and X-ray data (an oblate particle with an axial ratio 1:3.5), concerning the overall shape of the 30 S subparticle, is settled in favour of electron microscopy. The experimental neutron scattering curve of RNA within the small subparticle is well-described by the V-like RNA model proposed recently by Vasiliev et al. (1978).Experimental data are given to support the hypothesis that the maxima in the X-ray scattering curves, in the region of scattering angles corresponding to Bragg distances of 90 to 20 Å, arise from the ribosomal RNA component alone. It is shown that the prominence of the peaks in this region of the scattering curve depends only on the scattering fraction of the RNA component. The scattering fraction can be changed both by using the “native contrast” (ribosomal particles containing different amounts of protein) and by varying the solvent composition. The maxima are most pronounced where the RNA scattering fraction is highest or in solvents where the protein density is matched by the solvent. The scattering vectors of the maxima in the X-ray and neutron scattering curves, however, remain unchanged. This allows us to propose the tight packing of RNA as a common principle for the structural arrangement of RNA in ribosomes.  相似文献   

5.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

6.
A fragment with a molecular weight of 170,000 and a sedimentation coefficient of 13 S which is capable of specifically binding ribosomal protein S4 has been obtained by digestion of Escherichia coli 16 S RNA with ribonuclease A. The 13 S fragment of 16 S RNA and its complex with protein S4 have been studied by different physical methods; in the first place, by neutron scattering. It has been shown that this fragment is very compact in solution. The radii of gyration of this fragment (50 ± 3 Å) and of protein S4 within the complex (17 ± 3 Å) coincide, within the limits of experimental error, with the radii of gyration for the free RNA fragment (47 ± 2 Å) and the free ribosomal protein S4 in solution (18 ± 2 Å). Hence the conclusion is drawn that the compactness of the RNA fragment and the ribosomal protein does not change on complex formation. The compact 13 S fragment of 16 S RNA is shown to be contrast-matched in solvent containing 70% 2H2O which corresponds to a value for the partial specific volume of RNA of 0.537 cm3/g.  相似文献   

7.
A fragment of E. coli 16S RNA has been obtained by its hydrolysis with pancreatic RNAase A coupled to Sepharose 4B. This fragment has a molecular weight of 170 000 and a sedimentation coefficient of 13S. It does not aggregate in solution and binds with the ribosomal protein S4. The 13S fragment and it complex with the protein S4 have been studied by different physical methods in the first place, by neutron scattering. It has been shown that this fragment is compact in solution. The radii of gyration of the fragment (50 +/- 3 A) and of the protein S4 within the complex (17 +/- 3 A) coincide, within limits of experimental error, with the radii of gyration for the free RNA fragment (47 +/- 2 A) and the free ribosomal protein S4 in solution (18 +/- 2 A). Hence, the conclusion is made that the compactness of the 13S fragment of the 16S RNA and the ribosomal protein S4 does not change at the complex formation. The compact 13S fragment of the 16S RNA is shown to be contrast matched in the H2O/D2O mixture containing 70% D2O which corresponds to its partial specific volume v equal to 0.537 cm3/g.  相似文献   

8.
9.
We describe three groups of small angle neutron scattering (SANS) experiments with translating ribosomes: 1) regular protonated (normal abundance hydrogen) particles; 2) two isotopic hybrid particles which are reconstituted from one protonated and the other deuterated subunit; 3) four isotypic hybrid particles differing from each other by the extent of protein and RNA deuteration. Using the SANS contrast variation method the radii of gyration of protein and RNA components in both ribosomal subunits as well as the intersubunit distance in the pre- and post-translocation states were determined. The results obtained suggest the following model of the ribosome as a dynamic machine. The ribosome oscillates between two major conformers differing in geometrical dimensions. The 'active' (pulsating) part of the ribosome is the 30S subunit. We believe that the movement of its 'head' relative to the passive 50S subunit is the main mechanical act of translocation. The radius of gyration of the 30S subunit and the intersubunit distance change upon the movement. This is corroborated by neutron scattering data.  相似文献   

10.
Elongation factor G is shown to protect the nuclease splitting off the 3′ -terminal 11 S fragment from the 23 S RNA within the ribosomal 50 S subparticle.  相似文献   

11.
Summary The [H3]-labelled photo-activated analog of streptomycin (photo-Sm) is obtained as a result of the streptomycin reaction with 2-nitro, 4-azidobenzoylhydrazide and subsequent reduction with NaBH4 3. The analog retains the functional activity of the initial antibiotic as judged by two criteria: (1) it binds only to the 30S subparticle of ribosomes and (2) it inhibits the factor-free (“non-enzymatic”) PCMB-stimulated polyU-dependent system of translation (Gavrilova and Spirin, 1971). After irradiation of the reaction mixture containing photo-Sm and either the 30S or 50S subparticles of ribosomes under similar conditions, the analog covalently binds chiefly to the 30S subparticle. Irradiation of the photo-Sm mixture with whole 70S ribosomes leads to a uniform distribution of a covalently bound label among the subparticles. A comparison of the effects obtained allows the conclusion that the analog is located on the interface of the ribosomal subparticles. In the 30S subparticle the photo-Sm attacks mainly the protein component (more than 95% of all the covalently bound label). The proteins labelled by photo-reaction are identified as S7 (main), S14 (additional) and S16/S17 (minor).  相似文献   

12.
X-ray neutron solution scattering experiments have been done to investigate the influence of the binding of ribosomal protein S1 on the conformation of the 30-S ribosomal subunit of Escherichia coli. The following conclusions were made. 1. The alterations (if any) in conformation of the non-S1 parts of the 30-S subunit induced by S1 binding are too small to be detected (less than 0.1 nm change in radius of gyration). 2. The center of gravity of protein S1 bound to the 30-S subunit is quite far from the center of gravity of the particle (approximately 7.5 nm).  相似文献   

13.
Large ribonucleoprotein subparticles were recovered upon ribonuclease digestion of the 50 S ribosomal subunits of Escherichia coli, partially deproteinized by LiCl. Both their RNA and their protein compositions were analysed. The subunits, treated with LiCl at a concentration of 5.5 m, released an homogeneous subparticle containing proteins L3, L4, L13, L17, L22 and L29, about 70% of the 13 S fragment of 23 S RNA and about 50% of the 18 S one. Slightly larger species of subparticles were obtained from 50 S subunits treated with LiCl at concentrations between 3 m and 5 m; they contained in addition proteins L20, L21 and L23 or L2, L14, L20, L21 and L23 and a few small 23 S RNA fragments. No large subparticle was recovered from the 6 m-LiCl-treated 50 S subunits which contain only proteins L3, L13 and L17. These LiCl subparticles were compared with those obtained from intact, unfolded and sodium doecyl sulphatetreated 50 S subunits.These studies reveal that in the presence of 0.10 m-magnesium acetate there is a very compact area within 50 S subunits consisting of proteins L3, L4, L13, L17, L22 and L29 and of about 60% of 23 S RNA; this area probably has an essential structural role. The results also show that 23 S RNA has a more folded conformation when within the 50 S subunit than when isolated, this conformation being stabilized by some of the 50 S proteins, in particular proteins L4, L22, L20 and L21. Finally these data permit a more definite localization of the primary and/or secondary binding sites of proteins L2, L3, L4, L14, L17, L20, L21 and L22 on 23 S RNA.  相似文献   

14.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

15.
A eubacterial ribosome stalled on a defective mRNA can be released through a quality control mechanism referred to as trans-translation, which depends on the coordinating binding actions of transfer-messenger RNA, small protein B, and ribosome protein S1. By means of cryo-electron microscopy, we obtained a map of the complex composed of a stalled ribosome and small protein B, which appears near the decoding center. This result suggests that, when lacking a codon, the A-site on the small subunit is a target for small protein B. To investigate the role of S1 played in trans-translation, we obtained a cryo-electron microscopic map, including a stalled ribosome, transfer-messenger RNA, and small protein Bs but in the absence of S1. In this complex, several connections between the 30 S subunit and transfer-messenger RNA that appear in the +S1 complex are no longer found. We propose the unifying concept of scaffolding for the roles of small protein B and S1 in binding of transfer-messenger RNA to the ribosome during trans-translation, and we infer a pathway of sequential binding events in the initial phase of trans-translation.  相似文献   

16.
A large 12S RNA fragment which constitutes the 5' two-thirds of 16S-RNA from the E. coli 30S subunit has been investigated by small-angle X-ray and neutron scattering. The results indicate that in reconstitution buffer the 12S-RNA fragment has a molecular weight of 270,000 +/- 20,000 and a radius of gyration of 7.1 nm. The scattering data are compatible with the RNA being folded into two major domains with the shapes of two adjacent, quite similar cylinders.  相似文献   

17.
1. The larger subrivosomal particles of rabbit reticulocytes retained full activity in the puromycin reaction and in poly(U)-directed polyphenylalanine synthesis after 4h at 0 degrees C when buffered 0.5M-NH4Cl/10-30mM-MgCl2 was the solvent. 2. Activity in the puromycin reaction was diminished to approx 10% after 15-30 min at 0 degrees C when the concentration of MgCl2 was lowered to 2mM. 3. Activity was not restored when the concentration of MgCl2 was raised from 2mM to 10-30 mM at 0 degrees C. However, activity was recovered as measured by both assay systems when the ribosome fraction was heated to 37 degrees C at the higher concentrations of MgCl2. 4. Recovery of activity was noted during the course of the polyphenylalanine synthesis in 50 mM-KCl/5mM-MgCl2/25mM-Tris/HCl, pH 7.6, at 37 degrees C. Re-activation was slow at 20 degrees C and below. 5. No more than about 5% of the protein moiety of the subparticle was lost in 0.5M-NH4Cl on decreasing MgCl2 concentration from 10mM to 2mM. No proteins were detected in the supernatant fractions by gel electrophoresis after ribosomes were separated by differential centrifugation. The supernatant fraction was not essential for the recovery of activity. However, at higher (e.g. 1M) concentrations of NH4Cl, proteins were split from the subparticle. 6. The loss and regain of activity found on lowering and restoring the concentration of MgCl2 at 0.5M-NH4Cl appears to arise from a conformational change that does not seem to be associated with a loss and regain of particular proteins. 7. A 2% decrease in E260 was noticed when the concentration of Mg2+ was restored, and the change in the spectrum indicated a net increase of approx. 100A-U base-pairs per subribosomal particle. 8. When the concentration of Mg2+ was restored, S20,W of the subparticle remained at 52+/- 1S until the sample was incubated at 37 degrees C when S20,W increased to 56 +/- 1S compared with the value of 58 +/- 1S for the subparticle as originally isolated.  相似文献   

18.
The paper proposes a method of preparative isolation of all proteins from the 50S subparticle of E. coli ribosomes. The method is based on (1) preliminary fractionation into protein groups and ribonucleoprotein particles by a consecutive treatment of the 50S particles with increasing LiCl concentrations, and (2) chromatographic separation of protein groups on DE- and CM-cellulose and gel-filtration of separate fractions. The method allows to obtain any protein required for studies in preparative amounts avoiding many chromatographic stages. A detailed scheme of isolation of all proteins is given together with quantitative data of yields of individual proteins calculated per 6 g of the 50S subparticles.  相似文献   

19.
Different conformations have been identified for the enzyme valyl-tRNA synthetase from yeast inside its complex with one tRNA molecule by neutron scattering. One form is identical to that of the free enzyme in solution; the other form is more contracted, having a radius of gyration which is smaller by 10% and a specific volume which is smaller by 1%. The contracted conformation has been found for the complexes with tRNAVal and tRNAAsp in phosphate buffer (pH 6.3) provided the ionic strength is lower than about 150 mm. In higher ionic strength (up to about 500 mm) the enzyme still forms a complex with tRNAVal but its conformation remains that of the free protein in solution. In the complex with tRNA3Leu, the enzyme conformation is that of the free state even at the lowest ionic strength examined (that of the phosphate buffer, 60 mm). The free enzyme is an elongated molecule of radius of gyration 40 Å (a compact protein of the same molecular weight would have a radius of gyration of 30 Å).The positioning within the complex of tRNAVal, on the one hand, and tRNA3Leu, on the other, is very different. The first tRNA is intimately associated with the enzyme, lying predominantly closer to the centre of mass of the complex than the protein. In the complex with tRNA3Leu, the tRNA lies further away from the centre of mass of the complex than the protein.Small concentrations of tRNAVal, tRNAAsp, tRNA3Leu or Escherichia coli 5 S ribosomal RNA cause the enzyme to aggregate into dimers, trimers and higher aggregates provided the ionic strength of the buffer is below 150 mm. In higher ionic strength or for [RNA]: [enzyme] > 1 the aggregates are dissociated to yield the one-to-one RNA-enzyme complex.  相似文献   

20.
The 50 S ribosome of Escherichia coli is partially degraded by RNase I in presence of a high concentration of Mg2+ (10 to 20 mM); the partially degraded subunit becomes resistant to the further action of RNase I. The latter remains latent in association with the subparticle as in case of 30 S ribosome (Neu, H.C., and Heppel, L.A. (1954) Proc. Natl. Acad. Sci. U.S.A. 51, 1267-1274). As a result of nucleolytic action, 23 S RNA is degraded to a smaller size and four proteins (L4, L10, L7/L12) are released from the subunit. From the location of these proteins, it appears that the primary site of action of RNase I is the central protuberance of the armchair model proposed for the subunit (Stoffler, G., and Whitman, H.G. (1977) in Molecular Mechanisms of Protein Biosynthesis (Weissbach, H., and Pestka, S., eds) pp. 117-144, Academic Press, New York).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号