共查询到20条相似文献,搜索用时 0 毫秒
1.
At low ionic strength, spermine induces aggregation of native and H1-depleted chromatin at spermine/phosphate (Sp/P) ratios of 0.15 and 0.3, respectively. Physico-chemical methods (electric dichroism, circular dichroism and thermal denaturation) show that spermine, at Sp/P less than 0.15, does not appreciably alter the conformation of native chromatin and interacts unspecifically with all parts of chromatin DNA (linker as well as regions slightly or tightly bound to histones). In chromatin, the role of spermine could be more important in the stabilization of higher-order structure than in the condensation of the 30 nm solenoid. The addition of spermine to H1-depleted chromatin revealed two important features: (i) spermine can partially mimic the role of histone H1 in the condensation of chromatin; (ii) the core histone octamer does not appear to play any role in the aggregation process by spermine as DNA and H1-depleted chromatin aggregate at the same Sp/P ratio. 相似文献
2.
3.
Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin 总被引:6,自引:0,他引:6
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure. 相似文献
4.
Protein phi 0 is a unique protein which is present in the sperm of the sea cucumber, Holothuria tubulosa. It associates with histones, but its physiological role is unknown. From its amino acid composition and sequence, protein phi 0 can be considered as an H1-related protein. In this paper, we have studied its interaction with chicken erythrocyte chromatin particles of different complexity, from core particles to polynucleosomes. Addition of protein phi 0 results in marked chromatin insolubilization. The higher the molecular weight of the chromatin fragment, the lower is the phi 0/nucleosome molar ratio at which precipitation occurs, so that complete insolubilization of polynucleosomes is achieved at a phi 0/nucleosome molar ratio which is identical to that found in mature H. tubulosa spermatozoa. We have also found that the interaction of protein phi 0 with chromatin is cooperative. These findings contribute to clarification of the peculiar physico-chemical properties shown by H. tubulosa sperm chromatin and the role played by the phi 0 protein. 相似文献
5.
6.
The distribution of H1 histone is nonuniform in chromatin and correlates with different degrees of condensation 总被引:5,自引:0,他引:5
Salt induces aggregation of large chromatin fragments maximally at 150-200 mM NaCl. The soluble fragments are depleted of H1 histones while the aggregated fragments are enriched. H1 histones did not equilibrate between the soluble and insoluble chromatin fractions when they were recycled through the process of salt-induced aggregation. The chromatin fragments that resisted aggregation retained more H1c subtype than they did H1 ab, correlating with previous results which showed complexes of H1c with DNA resisted salt-induced aggregation much more than complexes of DNA with other subtypes. The chromatin that was soluble at physiological concentrations of NaCl was DNase I sensitive and enriched in acetylated core histones. We conclude that H1 histone is nonuniformly distributed in chromatin in a stable pattern that probably correlates with the different degrees of condensation known to exist in vivo. 相似文献
7.
Z Karetsou R Sandaltzopoulos M Frangou-Lazaridis C Y Lai O Tsolas P B Becker T Papamarcaki 《Nucleic acids research》1998,26(13):3111-3118
Prothymosin alpha (ProTalpha) is an abundant acidic nuclear protein that may be involved in cell proliferation. In our search for its cellular partners, we have recently found that ProTalpha binds to linker histone H1. We now provide further evidence for the physiological relevance of this interaction by immunoisolation of a histone H1-ProTalpha complex from NIH 3T3 cell extracts. A detailed analysis of the interaction between the two proteins suggests contacts between the acidic region of ProTalpha and histone H1. In the context of a physiological chromatin reconstitution reaction, the presence of ProTalpha does not affect incorporation of an amount of histone H1 sufficient to increase the nucleosome repeat length by 20 bp, but prevents association of all further H1. Consistent with this finding, a fraction of histone H1 is released when H1-containing chromatin is challenged with ProTalpha. These results imply at least two different interaction modes of H1 with chromatin, which can be distinguished by their sensitivity to ProTalpha. The properties of ProTalpha suggest a role in fine tuning the stoichiometry and/or mode of interaction of H1 with chromatin. 相似文献
8.
9.
F Watanabe 《Nucleic acids research》1986,14(8):3573-3585
The cooperative binding of histone H1 with DNA was studied using a fluorescently labelled histone H1. The titration data were analysed in terms of the large ligand model. The stoichiometric number, n = 65 +/- 10 bases/H1, was independent of NaCl concentration (0.02 - 0.35 M). The nucleation and the cooperative binding constants, K' and K, and the cooperativity parameter q were sensitive to salt concentration; K = 3.6 +/- 0.8 X 10(7) M-1 and q = 1.1 +/- 0.4 X 10(3) at 0.2 M NaCl. The dependence of K' on NaCl concentration revealed that 6 Na+ ions were released from DNA upon complex formation. An extrapolation of K' to 1M NaCl yielded a small value, K' = 5 +/- 2 M-1. Thus the binding of H1 is essentially electrostatic, being compatible with its independence of temperature. A calculation of K' based on the counterion release reproduced the salt concentration dependence of K'. Therefore, the binding of H1 is of an electrostatic territorial type. Thus, H1 may move along the DNA chain to a certain extent, when both salt concentration and the degree of saturation are sufficiently low. The condition is so restricted that the sliding would not play an important role in vivo. It was concluded from the DNA concentration independent binding isotherm that H1 can cooperatively bind onto a single DNA molecule. A simple power law dependence of the cooperativity parameter q upon NaCl concentration was found; q oc[NaCl]h with h = 0.72, though the physical basis of this dependence remains unknown. 相似文献
10.
The role of histone H1 in the actual interactions bringing about chromatin folding is investigated by studying the reversibility of its dissociation. H1 was dissociated by increase of the NaCl concentration and reassociated by dialysis, without removal from the dialysis bag. To scrutinize the fidelity of this stoichiometric form of chromatin reconstitution, we use circular dichroism, nuclease digestion, thermal denaturation and the sensitive electric birefringence method. No alteration of the repeat length and no nucleosomal sliding are observed upon the reassociation procedure. However, under all the different conditions investigated, the original value of the positive electric birefringence is never recovered, indicating an irreversible change of structure. CD and melting profiles confirm that DNA-protein interactions are modified, and orientational relaxation time measurements indicate that these structural perturbations affect the salt-induced transition of polynucleosomal fibers. The striking conclusion of these studies is that variations of ionic concentration are sufficient to induce irreversible structural alterations affecting the higher-order folding of chromatin. It is of interest that the only sample which exhibits behavior upon reassociation comparable to that of native chromatin is the one which experienced the fastest salt transitions. We suggest that these conformational changes arise from the unbinding to DNA of certain basic tails of histone(s), and that a competition for DNA binding locations exists upon the reassociation. These results are then additional arguments (Mazen, A., Hacques, M.F. and Marion, C.,J. Mol. Biol. 194, 741-745 (1987)), to suggest that dissociation of H1 might modify a direct interaction between basic tails of core histones and H1. 相似文献
11.
Histone H5 has been labelled with fluorescein isothiocyanate (FITC) with particular attention to the reaction conditions (pH, reaction time and input FITC/H5 molar ratio) and to the complete elimination of non-covalently bound dye. We preferred to use reaction conditions which yielded non-specific uniform labelling rather than specific alpha-NH2 terminal labelling, in order to obtain higher sensitivity in further studies dealing with the detection of perturbation at the binding sites of H5 on DNA. FITC-labelled H5 was further characterized by absorption and circular dichroism spectroscopy, and the fluorescein probe titrated in the 4-8 pH range. The structural integrity of H5 was found to be preserved after labelling. The positive electrostatic potential of the environment in which the FITC probe is embedded in the arginine/lysine-rich tails of H5 is believed to be responsible for the drop of pK of 1 unit found for H5-FITC as compared to free FITC. For the globular part of H5, the pK of covalently-bound FITC was only slightly lowered; this is a consequence of the much lower content in positively-charged amino-acid side chains in this region. 相似文献
12.
Over 80% of the nucleosomes in chromatin contain histone H1, a protein family known to affect the structure and activity of chromatin. Genetic studies and in vivo imaging experiments are changing the traditional view of H1 function and mechanism of action. H1 variants are partially redundant, mobile molecules that interact with nucleosomes as members of a dynamic protein network and serve as fine tuners of chromatin function. 相似文献
13.
The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization. 相似文献
14.
Structure, chemical modification, and interaction of histone H1 and its individual fragments with DNA and structural elements of chromatin are considered. Special attention is paid to phosphorylation of histone H1 molecules. Recent data concerning localization and mobility of histone H1 in chromatin as well as mechanisms of nucleosomal chain condensation are reviewed. 相似文献
15.
Salt-dependent co-operative interaction of histone H1 with linear DNA 总被引:18,自引:0,他引:18
The nature of the complexes formed between histone H1 and linear double-stranded DNA is dependent on ionic strength and on the H1 : DNA ratio. At an input ratio of less than about 60% (w/w) H1 : DNA, there is a sharp transition from non-co-operative to co-operative binding at a critical salt concentration that depends on the DNA size and is in the range 20 to 50 mM-NaCl. Above this critical ionic strength the H1 binds to only some of the DNA molecules leaving the rest free, as shown by sedimentation analysis. The ionic strength range over which this change in behaviour occurs is also that over which chromatin folding is induced. Above the salt concentration required for co-operative binding of H1 to DNA, but not below it, H1 molecules are in close proximity as shown by the formation of H1 polymers upon chemical cross-linking. The change in binding mode is not driven by the folding of the globular domain of H1, since this is already folded at low salt in the presence of DNA, as indicated by its resistance to tryptic digestion. The H1-DNA complexes at low salt, where H1 is bound distributively to all DNA molecules, contain thickened regions about 6 nm across interspersed with free DNA, as shown by electron microscopy. The complexes formed at higher salt through co-operative interactions are rods of relatively uniform width (11 to 15 nm) whose length is about 1.6 times shorter than that of the input DNA, or are circular if the DNA is long enough. They contain approximately 70% (w/w) H1 : DNA and several DNA molecules. These thick complexes can also be formed at low salt (15 mM-NaCl) when the H1 : DNA input ratio is sufficiently high (approximately 70%). 相似文献
16.
The interaction of histone H5 labelled with fluorescein isothiocyanate (FITC) with DNA has been studied by fluorescence titration, and diffusion-enhanced fluorescence energy transfer (DEFET) measurements with Tb(III) lanthanide chelates as donors. Analysis of the binding data by the model of Schwarz and Watanabe (J.Mol.Biol. 163, 467-484 (1983)) yielded a mean stoichiometry of 60 nucleotides per H5 molecule, independently of ionic strength, in the range of 3 to 300 mM NaCl, at very low DNA concentration (6 microM in mononucleotide). It ensues an approximate electroneutrality of the saturated complexes. Histone H5 molecules appeared to be clustered along the DNA lattice in clusters containing on average 3 to 4 H5 molecules separated by about 79 base pairs, at mid-saturation of the binding sites. The interaction process was found highly cooperative but the cooperativity parameter was also insensitive to ionic strength in the above range. DEFET experiments indicated an important decrease of accessibility of the FITC label to the TbHED3A and TbEDTA- chelates with ionic strength in the 0 to 100 mM NaCl range. In the presence of DNA, H5 appears already folded at low ionic strength so that the FITC probe is also not accessible to the donor chelate. The present study constitutes an indispensable preliminary step to further studies on the localization of histone H5 in condensed chromatin structures. 相似文献
17.
A series of monoclonal antibodies specific for distinguishable epitopes in chromosomal protein histone H5 were obtained from mice immunized with either free H5 or H5 . RNA complexes. The antibodies elicited by H5 could be distinguished from those elicited by H5 . RNA by their binding to native or acid-denatured H5, by their interaction with the globular region of H5, and by their cross-reactivity with H1o. The specificity of the antibodies was assessed by enzyme-linked immunosorbent assay (ELISA) and immunoblotting experiments. The antibodies could distinguish between H5 and the closely related histones H1 and H1o. The binding of some of the antibodies to the antigens was dependent on the type of assay used, suggesting nonrandom binding of the antigen to the solid supports used in ELISA and immunoblotting. Competitive ELISA experiments indicate that 8 of the 11 antibodies characterized bind to distinct epitopes. Three monoclonal antibodies bind to epitopes which are in close spatial proximity, causing mutual steric hindrance. The monoclonal antibodies bind to nuclei of fixed cells and to isolated chromatin, indicating that the epitopes are present both in the purified protein and in chromatin-complexed H5. These monoclonal antibodies can be used to study the organization of distinct regions of histones H5 and H1o in chromatin and chromosomes. 相似文献
18.
The relationships between the core histone N termini and linker histones during chromatin assembly and salt-dependent chromatin condensation were investigated using defined chromatin model systems reconstituted from tandemly repeated 5 S rDNA, histone H5, and either native "intact" core histone octamers or "tailless" histone octamers lacking their N-terminal domains. Nuclease digestion and sedimentation studies indicate that H5 binding and the resulting constraint of entering and exiting nucleosomal DNA occur to the same extent in both tailless and intact chromatin arrays. However, despite possessing a normal chromatosomal structure, tailless chromatin arrays can neither condense into extensively folded structures nor cooperatively oligomerize in MgCl(2). Tailless nucleosomal arrays lacking linker histones also are unable to either fold extensively or oligomerize, demonstrating that the core histone N termini perform the same functions during salt-dependent condensation regardless of whether linker histones are components of the array. Our results further indicate that disruption of core histone N termini function in vitro allows a linker histone-containing chromatin fiber to exist in a decondensed state under conditions that normally would promote extensive fiber condensation. These findings have key implications for both the mechanism of chromatin condensation, and the regulation of genomic function by chromatin. 相似文献
19.