首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-Amylases from Alfalfa (Medicago sativa L.) Roots   总被引:8,自引:8,他引:0       下载免费PDF全文
Amylase was found in high activity (193 international units per milligram protein) in the tap root of alfalfa (Medicago sativa L. cv. Sonora). The activity was separated by gel filtration chromatography into two fractions with molecular weights of 65,700 (heavy amylase) and 41,700 (light amylase). Activity staining of electrophoretic gels indicated the presence of one isozyme in the heavy amylase fraction and two in the light amylase fraction. Three amylase isozymes with electrophoretic mobilities identical to those in the heavy and the light amylase fractions were the only amylases identified in crude root preparations. Both heavy and light amylases hydrolyzed amylopectin, soluble starch, and amylose but did not hydrolyze pullulan or β-limit dextrin. The ratio of viscosity change to reducing power production during starch hydrolysis was identical for both alfalfa amylase fractions and sweet potato β-amylase, while that of bacterial α-amylase was considerably higher. The identification of maltose and β-limit dextrin as hydrolytic end-products confirmed that these alfalfa root amylases are all β-amylases.  相似文献   

2.
The formation of multiple forms of amylases in germinating rice (Oryza sativa L. cv Kimmaze) grains was examined by means of isoelectric focusing, cross-immunoelectrophoresis, and rocket-line immunoelectrophoresis followed by a reaction of enzymic characterization by using β-limit dextrin or starch as substrate. The constituents detected by isoelectric focusing were identified as three electrophoretically heterogeneous antigens. The major α-amylase bands A and B corresponded to a same antigen, the main portion of which was produced within 2 days' germination. The bulk of α-amylase D appeared between 2 and 4 days' germination. Component E, a debranching enzyme according to its action on the β-limit dextrin, already exists in the ungerminated seeds; its amount decreases within the first 2 days of germination and increases again thereafter.

Evidence showing that β-amylase (band C) is produced by the scutellum at an early stage of germination was provided. The enzyme appeared in a suspension of the scutellum after a prolonged incubation.

  相似文献   

3.
Simulated enzymic debranching of a β-limit dextrin model, prepared from a computed construct made by random extension and branching, and given the CCL value of w-maize amylopectin (and equal amounts of external chains with ECL values of 2 and 3) has been related to experimental chromatograms of the debranched β-limit dextrin of the amylopectin. The profile was similar to those from gel chromatograms and IEC-PAD chromatography.The equivalent lengths in glucosyl units of grid-links (g-links) of internal and external chains in constructs were calculated from the ICL and ECL values of amylopectin and models produced from the constructs with the appropriate lengths for internal and external chains. These derived models were subjected to simulated hydrolysis by Pseudomonas stutzeri amylase and the products compared with those of the experimental distribution from w-maize amylopectin. With the model the amounts of maltotetraose and maltodextrins released were similar to the experimental values but the distribution of branched maltodextrins was quite different. Unlike w-maize amylopectin – a polymer with the cluster structure – which has given a profile of molecular sizes of maltodextrins with low amounts of single and small numbers of internal chains and with a peak at a MW of about 14,000 (13 chains), in the model the proportion of maltodextrin with one internal chain was high and as d.p. increased the amounts decreased exponentially. This would be expected if the distribution of internal chains in the core was random. It is suggested that in the core of a model prepared from a construct made with alternating probabilities of extension – one in which this probability is high relative to branching, and a second in which it is low – may give clusters of branched maltodextrins with short internal chains which are joined by longer chains; more closely approximating the distribution of internal chains of different lengths in amylopectin.An arrangement for amylopectin molecules in the starch granule has been proposed. In this, they have a wafer-like, discoidal shape, composed of the amorphous zone overlain with the double helical, crystalline region. The flat macromolecules are concentrically layered with the former on the inside and the latter oriented to the outside of the granule.  相似文献   

4.
The most abundant β-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this β-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be a β-amylase by end product analysis and by its inability to hydrolyze β-limit dextrin and to release dye from starch azure. Pea β-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a Km of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromer-curiphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea β-amylase is competitively inhibited by its end product, maltose, with a Ki of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with α-cyclohexaamylose being a stronger inhibitor than β-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea β-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea β-amylase is the multichain type. Possible roles of pea β-amylase in cellular glucan metabolism are discussed.  相似文献   

5.
Monroe JD  Preiss J 《Plant physiology》1990,94(3):1033-1039
Amylase activity is elevated 5- to 10-fold in leaves of several different Arabidopsis thaliana mutants defective in starch metabolism when they are grown under a 12-hour photoperiod. Activity is also increased when plants are grown under higher light intensity. It was previously determined that the elevated activity was an extrachloroplastic β-(exo)amylase. Due to the location of this enzyme outside the chloroplast, its function is not known. The enzyme was purified to homogeneity from leaves of both a starchless mutant deficient in plastid phosphoglucomutase and from the wild type using polyethylene glycol fractionation and cyclohexaamylose affinity chromatography. The molecular mass of the β-amylase from both sources was 55,000 daltons as determined by denaturing gel electrophoresis. Gel filtration studies indicated that the enzyme was a monomer. The specific activities of the purified protein from mutant and wild-type sources, their substrate specificities, and Km for amylopectin were identical. Based on these results it was concluded that the mutant contained an increased level of β-amylase protein. Enzyme neutralization studies using a polyclonal antiserum raised to purified β-amylase showed that in each of two starchless mutants, one starch deficient mutant and one starch overproducing mutant, the elevated amylase activity was due to elevated β-amylase protein.  相似文献   

6.
Davis BD 《Plant physiology》1977,60(4):513-517
α-Amylase was found in the axis portion of ungerminated pea seeds (Pisum sativum var. Alaska). The occurrence of this enzyme was demonstrated with crude homogenates (also containing β-amylase) using three different methods: the hydrolysis of β-limit dextrin, the change in absorption spectra for the iodine-starch complex, and the increase in reducing materials relative to the decrease in starch. The first method was used to quantitate the changes in α-amylase activity during germination. The increase in total amylase activity (primarily β-amylase) paralleled germination; the accumulation of α-amylase activity was not initiated for an additional day. The increased α-amylase activity was related to epicotyl growth. Approximately half of this activity was found in the etiolated stem, the distribution being higher in growing than in nongrowing portions.  相似文献   

7.
普鲁兰酶是一类淀粉脱支酶,能够专一性切开支链淀粉分支中的α-1,6糖苷键,形成直链淀粉。普鲁兰酶可与其他淀粉酶协同作用,在淀粉加工工业中有着重要的用途和良好的市场前景。本文就普鲁兰酶的结构与催化机理、酶学性质、来源和应用进行了综述。  相似文献   

8.
Scorpion, one of the most ancient invertebrates was chosen, as a model of a primitive animal, to purify and characterize an amylase located in the hepatopancreas. The scorpion digestive amylase (SDA) was purified. Pure SDA was obtained after heat treatment followed by ammonium sulfate fractionation and three steps of chromatography. The pure amylase is not glycosylated and has a molecular mass of 59,101 Da determined by MALDI-TOF MS analysis. The maximal amylase activity was measured at pH 7.0 and 50 °C, in the presence of Ca2+ and using potato starch as substrate. The enzyme was able to hydrolyze also, glycogen and amylose. The 23 NH2-terminal amino acid SDA residues were sequenced. The sequence obtained is similar to those of mammalian and avian pancreatic amylases. Nevertheless, polyclonal antibodies directed against SDA failed to recognize classical digestive amylases like the porcine pancreatic one.  相似文献   

9.
The properties of two amylase activities which differ in their substrate specificity and subcellular location as well as a chloroplast-associated R-enzyme (debranching activity) are reported. An extrachloroplastic amylase is resolved by gel filtration chromatography into two activities of 80,000 and 40,000 daltons. Both extrachloroplastic activities hydrolyze amylopectin and shellfish glycogen and only slowly hydrolyze rabbit liver glycogen, β-limit amylopectin, and amylose. In contrast, the major chloroplastic amylase attacks all of these glucans at comparable rates. Glucan hydrolysis by both the extrachloroplastic and chloroplastic amylase generates not only maltose but appreciable amounts of other oligosaccharides, whereas maltotetraose hydrolysis produces glucose, maltose, and maltotriose. The action patterns displayed by the amylase activities indicate that both are endoamylases, although they lack the typical Ca2+ requirement or heat stability of seed endosperm α-amylases. Dithiothreitol, glutathione (oxidized or reduced), ascorbate, dehydroascorbate, and dithiothreitol plus thioredoxin have no effect on either the chloroplastic or extrachloroplastic amylase activities.  相似文献   

10.
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.  相似文献   

11.
Amylases from aleurone layers and starchy endosperm of barley seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
Amylases from incubated aleurone layers or from starchy endosperm of barley seeds (Hordeum vulgare L. cv. Himalaya) were investigated using acrylamide gel electrophoresis and analytical gel filtration with Sephadex G-200. Electrophoresis of amylase from aleurone layers yields seven visually distinct isozymes with an estimated molecular weight of 43,000. Because each isozyme hydrolyzes β-limit dextrin azure and incorporates calcium-45, they are α-amylases. On Sephadex G-200, amylase from the aleurone layers is separated into seven fractions ranging in estimated molecular weights from 45,000 to 3,000. Little or no activity is observed when six fractions are subjected to electrophoresis. Electrophoresis of only the fraction with the estimated molecular weight of 45,000 gave the seven isozymes. The amylases are heat labile and cannot be stabilized by the presence of substrate or by the protease inhibitor, phenylmethylsulfonylfluoride. Electrophoresis of amylase from the starchy endosperm yields nine β-amylases. Four of these β-amylases are isozymes with an estimated molecular weight of 43,000. The other five forms of β-amylase represent molecular aggregates of the four basic β-amylase monomers. A dimer, a tetramer, and an octamer of β-amylase can be identified with estimated molecular weights of about 86,000, 180,000 and 400,000, respectively. These estimated molecular weights were confirmed on Sephadex G-200. There are five additional fractions of β-amylase with estimated molecular weights ranging from 30,000 to 4,000. These fractions are not observed electrophoretically.  相似文献   

12.
A medium was developed to obtain maximum yields of extracellular amylase from Bacteroides amylophilus 70. Crude enzyme preparation, obtained by ammonium sulfate precipitation of cell-free broth, contained six amylolytic isoenzymes that were detected by isoelectric focusing and polyacrylamide gel electrophoresis. One of these amylases was purified by diethylaminoethyl-Sephadex A-50 ion-exchange chromatography and Sephadex G-200 gel filtration techniques. Some properties of the purified extracellular alpha-amylase were: optimum pH, 6.3; optimum temperature, 43 degrees C: PH stability range, 5.8 to 7.5; isoelectric point, pH 4.6; molecular weight, 92,000 (by sodium dodecyl sulfatedisc gel electrophoresis); and sugars causing inhibition, cyclomaltoheptaose, cyclomaltohexaose, and alpha-d-phenylglucoside. In addition, Ca2+ and Co2+ were strong activators,and Hg2+ was a strong inhibitior; all other cations were slightly stimulatory. Dialysis against 0.01 M ethylenediaminetetraacetic acid caused a 58% loss of activity that was restored to 92% of the original by the addition of 0.04 M Ca2+. The enzyme affected a blue-value-reducing-value curve characteristic of alpha-type amylases. The relative rates of hydrolysis of amylose, soluble starch, amylopectin, and dextrin were 100, 97, 92, and 60%, respectively; Michaelis constants for these substrates were 18.2, 18.7, 18.2, and 16.7 mumol of d-glucosidic bond/liter, respectively. The enzyme degraded maize (corn) starch granules to some extent and had relatively little activity on potato starch granules.  相似文献   

13.
Saeed M  Duke SH 《Plant physiology》1990,94(4):1813-1819
Pea (Pisum sativum L.) tissues with reduced chloroplast density (e.g. petals and stems) or function (i.e. senescent leaves and leaves darkened for prolonged periods) were surveyed to determine whether tissues with genetically or environmentally reduced chloroplast density and/or function also have significantly different amylolytic enzyme activities and/or isoform patterns than leaf tissues with totally competent chloroplasts. Native PAGE followed by electrophoretically blotting through a starch or β-limit dextrin containing gel and KI/I2 staining revealed that the primary amylases in leaves, stems, petals, and roots were the primarily vacuolar β-amylase (EC 3.2.1.2) and the primarily apoplastic α-amylase (EC 3.2.1.1). Among tissues of light grown pea plants, petals contained the highest levels of total amylolytic (primarily β-amylase) activity and considerably higher ratios of β- to α-amylase. In aerial tissues there was an inverse relationship between chlorophyll and starch concentration, and β-amylase activity. In sections of petals and stems there was a pronounced inverse relationship between chlorophyll concentration and the activity of α-amylase. Senescing leaves of pea, as determined by age, and protein and chlorophyll content, contained 3.8-fold (fresh weight basis) and 32-fold (protein basis) higher α-amylase activity than fully mature leaves. Leaves maintained in darkness for 12 days displayed a 14-fold (fresh weight basis) increase in α-amylase activity over those grown under continuous light. In senescence and prolonged darkness studies, the α-amylase that was greatly increased in activity was the primarily apoplastic α-amylase. These studies indicate that there is a pronounced inverse relationship between chloroplast function and levels of apoplastic α-amylase activity and in some cases an inverse relationship between chloroplast density and/or function and vacuolar β-amylase activity.  相似文献   

14.
A β-amylase and a pullulanase produced by Bacillus cereus var. mycoides were purified by means of ammonium sulfate fractionation, adsorption on starch and celite and Sephadex G–100 column chromatography. The purified enzymes were homogeneous in disc electrophoresis.

The β-amylase released only maltose from amylose, amylopectin, starch and glycogen, and the released maltose was in β-form. The pullulanase released maltose, maltotriose and maltotetraose from β-limit dextrin and maltotriose from pullulan, but not amylose-like substance from amylopectin.

The optimum pHs of β-amylase and pullulanase were about 7 and 6~6.5, respectively. The optimum temperatures of the enzymes were about 50°C. The enzymes were inhibited by the sulfhydryl reagents such as mercuric chloride and p-chloromercuribenzoate, and the inhibitions with p-chloromercuribenzoate were restored by the addition of cysteine. The molecular weights of β-amylase and pullulanase were estimated to be 35,000±5,000 and 110,000±20,000, respectively.  相似文献   

15.
α-Amylases are glucan hydrolases that cleave α-1,4-glucosidic bonds in starch. In vascular plants, α-amylases can be classified into three subfamilies. Arabidopsis has one member of each subfamily. Among them, only AtAMY3 is localized in the chloroplast. We expressed and purified AtAMY3 from Escherichia coli and carried out a biochemical characterization of the protein to find factors that regulate its activity. Recombinant AtAMY3 was active toward both insoluble starch granules and soluble substrates, with a strong preference for β-limit dextrin over amylopectin. Activity was shown to be dependent on a conserved aspartic acid residue (Asp666), identified as the catalytic nucleophile in other plant α-amylases such as the barley AMY1. AtAMY3 released small linear and branched glucans from Arabidopsis starch granules, and the proportion of branched glucans increased after the predigestion of starch with a β-amylase. Optimal rates of starch digestion in vitro was achieved when both AtAMY3 and β-amylase activities were present, suggesting that the two enzymes work synergistically at the granule surface. We also found that AtAMY3 has unique properties among other characterized plant α-amylases, with a pH optimum of 7.5–8, appropriate for activity in the chloroplast stroma. AtAMY3 is also redox-regulated, and the inactive oxidized form of AtAMY3 could be reactivated by reduced thioredoxins. Site-directed mutagenesis combined with mass spectrometry analysis showed that a disulfide bridge between Cys499 and Cys587 is central to this regulation. This work provides new insights into how α-amylase activity may be regulated in the chloroplast.  相似文献   

16.
The physiological and/or clinical significance of sugar chains in human salivary αamylase was investigated in terms of substrate-specificity for synthesized malto-oligosaccharides. Glycosylated and non-glycosylated α-amylases were prepared on a Sephacryl S-200 column, in which the amylases were separated into four fractions from the different affinities for Sephacryl: fraction I, amylases bearing sugar chains with sialic acid; fraction II, amylases bearing sugar chains without sialic acid; fractions III and IV, non-glycosylated amylases. These were classified according to the differences in their affinities for lectins, molecular sizes and isoelectric points. The inhibitory effect of maltotriose (G3) on starch hydrolysis of the amylase fraction, suggests that starch and G3 can be the substrate for glycosylated amylase, and that the glycosylated amylases are capable of G3 hydrolysis for conversion into maltose and glucose. Using malto-oligosaccharides, G3, G4, G5 and G7, as substrates, the substrate-specificities and G3/G5 ratio of amylase activities in the four fractions were examined. Maltopentaose, G5, is routinely used as a substrate for α-amylase, and then we assumed that both glycosylated and non-glycosylated amylases react with G5. Moreover, the results indicate that the glycosylated amylases clearly had a higher capacity for G3 hydrolysis than the non-glycosylated amylases, although no substrate preference of either type of amylase was observed among G4, G5 and G7. Glycosylated amylases have the capacity for glucose formation from malto-oligosaccharides.  相似文献   

17.
The protein fraction extracted with a high ionic strength buffer from the cell wall preparation of oat ( Avena sativa L.) coleoptiles and first leaves contained starch-degrading (amylase) activity. The activity of apoplastic amylase in the coleoptiles and first leaves continued to increase in parallel with organ growth. One of the apoplastic amylases recovered from shoot cell wall preparations was purified by sequential ion exchange and gel filtration chromatography, and the catalytic properties of the enzyme were analysed. The purified enzyme gave a single 25 kDa protein band on SDS-PAGE. The enzyme exhibited maximum activity at pH 5.0 against maltooligosaccharides. The purified enzyme hydrolysed soluble starch and maltooligosaccharides larger than tetraose at maltose unit, but did not hydrolyse β -limit dextrin or p -nitrophenyl- α - d -glucopyranoside. These results as well as the findings that the molecular size and the catalytic properties of the purified enzyme are different from those of known amylases obtained from Gramineae caryopses suggest that this enzyme is a novel type of β -amylase present in cell walls of vigorously elongating Gramineae shoot organs.  相似文献   

18.
Summary Starch-containing plastic films exposed to a natural freshwater environment were shown previously to undergo significant depletion of the starch components. The culture media from a number of starch-hydrolyzing bacteria that had been collected from larvae attached to these films were found to have -amylase activity. Levels of amylase activity increased with culture age. Most of the activity was found to be cell-associated, and correlated on starch zymograms with an activity at about 55 kDa, in the >50% ammonium sulfate fractionation sample. The pH optimum for these amylases was just at or slightly above neutral, with a temperature optimum of about 65°C.  相似文献   

19.
《Carbohydrate research》1987,162(1):33-40
The size and shape of β-limit dextrin have been investigated by using pulsed, field-gradient nuclear magnetic resonance and analytical ultracentrifugation. In addition, the β-limit dextrin has been compared with the amylopectin from which it was derived by enzymic hydrolysis. When measuring size and shape, dimethyl sulfoxide was used as the solvent, in order to avoid problems of polymer agggregation. The results suggest that β-limit dextrin is an oblate ellipsoid with an axial ratio of ∼5:1, and the corresponding amylopectin molecule is even flatter. This indicates that the linear segments beyond the final branch-points of amylopectin lie in the plane of its branched core. The study also demonstrated that the density of packing of polymer chains in this branched core is much greater than at the periphery of amylopectin, and that the latter region is the location of the great majority of the nonreducing chains cleaved by beta amylase. Furthermore, the different sized molecules in amylopectin samples appear to undergo the same degree of degradation by this enzyme.  相似文献   

20.
A hyperthermophilic archaeon, Thermococcus profundus DT5432, produced extracellular thermostable amylases. One of the amylases (amylase S) was purified to homogeneity by ammonium sulfate precipitation, DEAE-Toyopearl chromatography, and gel filtration on Superdex 200HR. The molecular weight of the enzyme was estimated to be 42,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 5.5 to 6.0 and was stable in the range of pH 5.9 to 9.8. The optimum temperature for the activity was 80(deg)C. Half-life of the enzyme was 3 h at 80(deg)C and 15 min at 90(deg)C. Thermostability of the enzyme was enhanced in the presence of 5 mM Ca(sup2+) or 0.5% soluble starch at temperatures above 80(deg)C. The enzyme activity was inhibited in the presence of 5 mM iodoacetic acid or 1 mM N-bromosuccinimide, suggesting that cysteine and tryptophan residues play an important role in the catalytic action. The amylase hydrolyzed soluble starch, amylose, amylopectin, and glycogen to produce maltose and maltotriose of (alpha)-configuration as the main products. Smaller amounts of larger maltooligosaccharides were also produced with a trace amount of glucose. Pullulan; (alpha)-, (beta)-, and (gamma)-cyclodextrins; maltose; and maltotriose were not hydrolyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号