首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells.  相似文献   

2.
Cultures of the rat skeletal muscle myoblast cell line, L6, were treated with the mutagen ethylmethanesulfonate and grown in the presence of alpha-amanitin, an inhibitor of RNA polymerase II in vitro. One clonal cell line, Ama102, resistant tc the cytotoxic action of 2 mu-g/ml of alpha-amanitin was isolated and extensively characterized. Ama102 cells were about 30-fold more resistant to alpha-amanitin than their Ama+ parent cells based on a comparison of the concentration of alpha-amanitin required to reduce their plating efficiencies to similar extents. The RNA polymerase activities from Ama+ and Ama102 cells were solubilized and separated by DEAE-Sephadex chromatography. Whereas all of the Ama+ RNA polymerase II activity was inhibited by 0.1 mu-g/ml of alpha-amanitin, about 30% of the activity in the Ama102 RNA polymerase II peak was resistant to this concentration of alpha-amanitin and was inhibited only by much higher concentrations (25 mu-g/ml) of alpha-amanitin. This alpha-amanitin-resistant activity in Ama102 cells was identified as a bona fide RNA polymerase II by its chromatographic behavior on DEAE-Sephadex, salt optimum, preference for denatured DNA as template, insensitivity to inhibition by potassium phosphate, thermal inactivation kinetics, and inactivation by anti-RNA polymerase II antiserum. Both RNA polymerase IIa and IIb from Ama102 cells exhibited the partial alpha-amanitin resistance, as did this activity when purified further on phosphocellusose. Unlike the parental Ama+ cells, Ama102 cells neither fused at confluence nor showed an increase in the specific activity of creatine kinase. The altered sensitivity of the Ama102 RNA polymerase II to alpha-amanitin appears to account for the drug-resistant phenotype of these cells.  相似文献   

3.
Spontaneous and EMS-induced alpha-amanitin-resistant Aedes albopictus cells have been isolated and characterized. Two mutant sublines, one of intermediate resistance (alpha A2) and the other highly resistant (Ama18) contained RNA polymerase II activity, the resistance of which in vitro to alpha-amanitin correlated well with the resistance of these cells in vivo. The resistance of these cells to alpha-amanitin can likely be attributed to the presence of an altered RNA polymerase II.  相似文献   

4.
In an attempt to establish which RNA polymerase catalyzes the synthesis of the low molecular weight RNA components A, C and D, Ama 1 cells (mutant Chinese hamster cells) were used in experiments with addition of alpha-amanitin. Ama 1 cells contain an altered RNA polymerase II which is 800 times more resistant towards inhibition by alpha-amanitin than the wild type enzyme. Alpha-amanitin (up to 200 microgram/ml) added to these cells does not affect the synthesis of the low molecular weight RNAs A, C and D. These data together with our previous data showing that alpha-amanitin (0.5 - 5.0 microgram/ml) preferentially inhibits the synthesis of A, C and D in normal cells indicate that RNA polymerase II catalyzes the synthesis of the low molecular weight RNA components A, C and D.  相似文献   

5.
6.
7.
8.
9.
The carboxyl-terminal domain (CTD) of the mouse RNA polymerase II largest subunit consists of 52 repeats of a seven-amino-acid block with the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. A genetic approach was used to determine whether the CTD plays an essential role in RNA polymerase function. Deletion, insertion, and substitution mutations were created in the repetitive region of an alpha-amanitin-resistant largest-subunit gene. The effects of these mutations on RNA polymerase II activity were assayed by measuring the ability of mutant genes to confer alpha-amanitin resistance after transfection of susceptible rodent cells. Mutations that resulted in CTDs containing between 36 and 78 repeats had no effect on the transfer of alpha-amanitin resistance, whereas mutations with 25 or fewer repeats were inactive in this assay. Mutations that contained 29, 31, or 32 repeats had an intermediate effect; the number of alpha-amanitin-resistant colonies was lower and the colonies obtained were smaller, indicating that the mutant RNA polymerase II was defective. In addition, not all of the heptameric repeats were functionally equivalent in that repeats that diverged in up to three amino acids from the consensus sequence could not substitute for the conserved heptamer repeats. We concluded that the CTD is essential for RNA polymerase II activity, since substantial mutations in this region result in loss of function.  相似文献   

10.
11.
12.
13.
14.
15.
Our laboratory has developed methods for transient state kinetic analysis of human RNA polymerase II elongation. In these studies, multiple conformations of the RNA polymerase II elongation complex were revealed by their distinct elongation potential and differing dependence on nucleoside triphosphate substrate. Among these are conformations that appear to correspond to different translocation states of the DNA template and RNA-DNA hybrid. Using alpha-amanitin as a dynamic probe of the RNA polymerase II mechanism, we show that the most highly poised conformation of the elongation complex, which we interpreted previously as the posttranslocated state, is selectively resistant to inhibition with alpha-amanitin. Because initially resistant elongation complexes form only a single phosphodiester bond before being rendered inactive in the following bond addition cycle, alpha-amanitin inhibits elongation at each translocation step.  相似文献   

16.
Alpha-amanitin-resistant D. melanogaster with an altered RNA polymerase II.   总被引:18,自引:0,他引:18  
Following EMS mutagenesis we recovered a mutant of D. melanogaster that grows at concentrations of alpha-amanitin lethal to wild-type. To our knowledge this mutant represents the first example of an amanitin-resistant eucaryotic organism. The amanitin resistance of the mutant (AmaC4) is due to an alteration in its DNA-dependent RNA polymerase II, which is approximately 250 times less sensitive to inhibition by amanitin than the wild-type polymerase II whether tested in nuclei, in partially-fractionated extracts or as a highly purified enzyme. While the wild-type enzyme activity is inhibited 50% by 2.1 x 10(-8) M alpha-amanitin, inhibition of 50% of the AmaC4 RNA polymerase II activity requires a toxin concentration of 5.6 x 10(-6) M. The mutation responsible for the amanitin resistance of AmaC4 is on the X chromosome near the vermillion locus.  相似文献   

17.
1. DNA-dependent RNA polymerases I and II were purified approx 3900- and 13,000-fold, respectively, from sonicated nuclear extract of cherry salmon (Oncorhynchus masou) liver by DEAE-Sephadex, heparin-Sepharose and DNA-cellulose column chromatography. 2. The purified RNA polymerases exhibited a requirement for four kinds of ribonucleoside 5'-triphosphates, an exogeneous template and divalent cation. 3. The activities of RNA polymerases I and II were inhibited by Actinomycin D (24 micrograms/ml) but not by Rifampicin (200 micrograms/ml). 4. RNA polymerase I preferred native DNA as template, while polymerase II preferred single-stranded DNA. 5. RNA polymerase II was inhibited by a low concentration of alpha-amanitin (0.02 micrograms/ml). RNA polymerase I was also inhibited by the relatively high concentration of alpha-amanitin (IC50 = 100 micrograms/ml and IC70 = 750 micrograms/ml). 6. RNA polymerases from cherry salmon exhibited a higher activity at low temperature than from rat liver.  相似文献   

18.
19.
RNA polymerase II polypeptides present in [35S]methionine-labeled Chinese hamster ovary (CHO) cell extracts have been quantitatively immunoprecipitated with an anti-calf thymus RNA polymerase II serum. Analyses of the immunoprecipitates on sodium dodecyl sulfate polyacrylamide gels indicated that the immunoprecipitated polymerase II of both wild type CHO cells and the alpha-amanitin-resistant mutant Ama1 had polypeptides of molecular weight 214,000, 140,000, 34,000, 25,000, 23,000, 20,500, and 16,500. In heterozygous alpha-amanitin-resistant/alpha-amanitin-sensitive hybrid CHO cells, growth in the presence of alpha-amanitin results in the inactivation of the alpha-amanitin-sensitive RNA polymerase II activity and a compensating increase in the activity of the alpha-amanitin-resistant enzyme. Determination of the rates of synthesis and degradation of RNA polymerase II polypeptides using [35S]methionine labeling and polymerase II immunoprecipitation demonstrated that this increase in activity of alpha-amanitin-resistant polymerase II resulted from a co-ordinate increase in the rate of synthesis of at least three polypeptides of RNA polymerase II. At the same time, there was an enhanced rate of degradation of the alpha-amanitin-inactivated RNA polymerase II polypeptides.  相似文献   

20.
Inhibition of yeast ribonucleic acid polymerases by thiolutin   总被引:17,自引:3,他引:14  
Yeast ribonucleic acid (RNA) polymerase II, isolated after fractionation on diethylaminoethyl (DEAE)-cellulose (DE-52) or on DEAE-Sephadex (A-25), is 50% inhibited by 1.5 mug of alpha-amanitin. This inhibition is independent of the sequence of interaction of enzyme, template, nucleotides, and antibiotic and is expressed immediately on addition of alpha-amanitin to a preparation actively synthesizing RNA. Thus, alpha-amanitin's primary effect is inhibition of elongation of preinitiated RNA sequences in this system, as in others. A single peak of alpha-amanitin-resistant RNA polymerase activity (I) was eluted before enzyme II on either column. On A-25 but not on DE-52, a third peak of activity (III) was eluted after enzyme II. This activity was also resistant to alpha-amanitin. Enzymes I, II, and III were 50% inhibited by 3, 4, and 3 mug of thiolutin per ml, respectively. The extent of inhibition was independent of the nature of the template (native or denatured salmon sperm deoxyribonucleic acid or poly(dA-dT) or of the presence of 0.4 mM dithiothreitol, but this marked inhibition was only seen when enzymes were preincubated with thiolutin in the absence of template. Template protected the enzymes against thiolutin in the absence of nucleotides. Either the sensitive site on the polymerase is only accessible to thiolutin before interaction with template or thiolutin inhibits functional polymerase-template interaction but not elongation of preinitiated RNA chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号