首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objectives of this study were to select and initially characterize mutants of soybean (Glycine max L. Merr. cv Williams) with decreased ability to reduce nitrate. Selection involved a chlorate screen of approximately 12,000 seedlings (progeny of mutagenized seed) and subsequent analyses for low nitrate reductase (LNR) activity. Three lines, designated LNR-2, LNR-3, and LNR-4, were selected by this procedure.

In growth chamber studies, the fully expanded first trifoliolate leaf from NO3-grown LNR-2, LNR-3, and LNR-4 plants had approximately 50% of the wild-type NR activity. Leaves from urea-grown LNR-2, LNR-3, and LNR-4 plants had no NR activity while leaves from comparable wild-type plants had considerable activity; the latter activity does not require the presence of NO3 in the nutrient solution for induction and on this basis is tentatively considered as a constitutive enzyme. Summation of constitutive (urea-grown wild-type plants) and inducible (NO3-grown LNR-2, LNR-3, or LNR-4 plants) leaf NR activities approximated activity in leaves of NO3-grown wild-type plants. Root NR activities were comparable in wild-type and mutant plants grown on NO3, and roots of both plant types lacked constitutive NR activity when grown on urea. In both growth chamber- and field-grown plants, oxides of nitrogen [NO(x)] were evolved from young leaves of wild-type plants, but not from leaves of LNR-2 plants, during in vivo NR assays. Analysis of leaves from different canopy locations showed that constitutive NR activity was confined to the youngest three fully expanded leaves of the wild-type plant and, therefore, on a total plant canopy basis, the NR activity of LNR-2 plants was approximately 75% that of wild-type plants. It is concluded that: (a) the NR activity in leaves of NO3-grown wild-type plants includes both constitutive and inducible activity; (b) the missing NR activity in LNR-2, LNR-3, and LNR-4 leaves is the constitutive component; and (c) the constitutive NR activity is associated with NO(x) evolution and occurs only in physiologically young leaves.

  相似文献   

2.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

3.
Growth chamber studies with soybeans (Glycine max [L.] Merr.) were designed to determine the relative limitations of NO3, NADH, and nitrate reductase (NR) per se on nitrate metabolism as affected by light and temperature. Three NR enzyme assays (+NO3in vivo, −NO3in vivo, and in vitro) were compared. NR activity decreased with all assays when plants were exposed to dark. Addition of NO3 to the in vivo NR assay medium increased activity (over that of the −NO3in vivo assay) at all sampling periods of a normal day-night sequence (14 hr-30 C day; 10 hr-20 C night), indicating that NO3 was rate-limiting. The stimulation of in vivo NR activity by NO3 was not seen in plants exposed to extended dark periods at elevated temperatures (16 hr-30 C), indicating that under those conditions, NO3 was not the limiting factor. Under the latter condition, in vitro NR activity was appreciable (19 μmol NO2 [g fresh weight, hr]−1) suggesting that enzyme level per se was not the limiting factor and that reductant energy might be limiting.  相似文献   

4.
The comparative induction of nitrate reductase (NR) by ambient NO3 and NO2 as a function of influx, reduction (as NR was induced) and accumulation in detached leaves of 8-day-old barley (Hordeum valgare L.) seedlings was determined. The dynamic interaction of NO3 influx, reduction and accumulation on NR induction was shown. The activity of NR, as it was induced, influenced its further induction by affecting the internal concentration of NO3. As the ambient concentration of NO3 increased, the relative influences imposed by influx and reduction on NO3 accumulation changed with influx becoming a more predominant regulant. Significant levels of NO3 accumulated in NO2-fed leaves. When the leaves were supplied cycloheximide or tungstate along with NO2, about 60% more NO3 accumulated in the leaves than in the absence of the inhibitors. In NO3-supplied leaves NR induction was observed at an ambient concentration of as low as 0.02 mm. No NR induction occurred in leaves supplied with NO2 until the ambient NO2 concentration was 0.5 mm. In fact, NR induction from NO2 solutions was not seen until NO3 was detected in the leaves. The amount of NO3 accumulating in NO2-fed leaves induced similar levels of NR as did equivalent amounts of NO3 accumulating from NO3-fed leaves. In all cases the internal concentration of NO3, but not NO2, was highly correlated with the amount of NR induced. The evidence indicated that NO3 was a more likely inducer of NR than was NO2.  相似文献   

5.
Corn seedlings (Zea mays cv W64A × W182E) were grown hydroponically, in the presence or absence of NO3, with or without light and with NH4Cl as the only N source. In agreement with earlier results nitrate reductase (NR) activity was found only in plants treated with both light and NO3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer of the proteins to nitrocellulose paper and reaction with antibodies prepared against a pure NR showed that crude extracts prepared from light-grown plants had a polypeptide of approximately 116 kilodaltons (the subunit size for NR) when NO3 was present in the growth medium. Crude extracts from plants grown in the dark did not have the 116 kilodalton polypeptide, although smaller polypeptides, which reacted with NR-immunoglobulin G, were sometimes found at the gel front. When seedlings were grown on Kimpack paper or well washed sand, NR activity was again found only when the seedlings were exposed to light and NO3. Under these conditions, however, a protein of about 116 kilodaltons, which reacted with the NR antibody was present in light-grown plants whether NO3 was added to the system or not. The NR antibody cross-reacting protein was also seen in hydroponically grown plants when NH4Cl was the only added form of nitrogen. These results indicate that the induction of an inactive NR-protein precursor in corn is mediated either by extremely low levels of NO3 or by some other unidentified factor, and that higher levels of NO3 are necessary for converting the inactive NR cross-reacting protein to a form of the enzyme capable of reducing NO3 to NO2.  相似文献   

6.
Transformed Nicotiana plumbaginifolia plants with constitutive expression of nitrate reductase (NR) activity were grown at different levels of nitrogen nutrition. The gradients in foliar NO 3 content and maximum extractable NR activity observed with leaf order on the shoot, from base to apex, were much decreased as a result of N-deficiency in both the transformed plants and wild type controls grown under identical conditions. Constitutive expression of NR did not influence the foliar protein and chlorophyll contents under any circumstances. A reciprocal relationship between the observed maximal extractable NR activity of the leaves and their NO 3 content was observed in plants grown in nitrogen replete conditions at low irradiance (170 mol photons·m–2 ·s–1). This relationship disappeared at higher irradiance (450 mol photons·m–2·S–1) because the maximal extractable NR activity in the leaves of the wild type plants in these conditions increased to a level that was similar to, or greater than that found in constitutive NR-expressors. Much more NO 3 accumulated in the leaves of plants grown at 450 mol photons·m–2·s–1 than in those grown at 170 mol photons·m–2·s–1 in N-replete conditions. The foliar NO 3 level and maximal NR activity decreased with the imposition of N-deficiency in all plant types such that after prolonged exposure to nitrogen depletion very little NO 3 was found in the leaves and NR activity had decreased to almost zero. The activity of NR decreased under conditions of nitrogen deficiency. This regulation is multifactoral since there is no regulation of NR gene expression by NO 3 in the constitutive NR-expressors. We conclude that the NR protein is specifically targetted for destruction under nitrogen deficiency. Consequently, constitutive expression of NR activity does not benefit the plant in terms of increased biomass production in conditions of limiting nitrogen.Abbreviations Chl chlorophyll - N nitrogen - NR NADH-nitrate reductase - WT wild type  相似文献   

7.
Soybean (Glycine max [L.] Merr.) leaves have been shown to contain three forms of nitrate reductase (NR). Two of the forms, which are present in leaves of wild-type (cv. Williams) plants grown in the absence of NO3, are termed constitutive and designated c1NR and c2NR. The third form, which is present in NO3-grown mutant (nr1) plants lacking the constitutive forms, is termed inducible and designated iNR. Samples of c1NR, c2NR, and iNR obtained from appropriately treated plants were analyzed for the presence of partial activities, response to inhibitors, and ability to complement a barley NR which lacks the molybdenum cofactor (MoCo) but is otherwise active.

The three forms were similar to most assimilatory NR enzymes in that they (a) exhibited NADH-cytochrome c reductase, reduced flavin mononucleotide-NR, and reduced methyl viologen-NR partial activities; (b) were inhibited by p-hydroxymercuribenzoate at the site of initial electron transport through each enzyme; (c) were more inhibited by CN in their reduced enzyme state as compared with their oxidized state; and (d) complemented a MoCo-defective NR (e.g. contained cofactors with characteristics similar to the MoCo found in barley NR and commercial xanthine oxidase). However, among themselves, they showed dissimilarities in their response to treatment with HCO3 and CN, and in their absolute ability to complement the barley NR. The site of effect for these treatments was the terminal cofactor-containing portion of each enzyme. This indicated that, although a terminal cofactor (presumably a MoCo) was present in each form, structural or conformational differences existed in the terminal cofactor-protein complex of each form.

  相似文献   

8.
Intercellular localization of nitrate reductase in roots   总被引:17,自引:8,他引:9       下载免费PDF全文
Experiments were conducted with segments of corn roots to investigate whether nitrate reductase (NR) is compartmentalized in particular groups of cells that collectively form the root symplastic pathway. A microsurgical technique was used to separate cells of the epidermis, of the cortex, and of the stele. The presence of NR was determined using in vitro and enzyme-linked immunosorbent assays. In roots exposed to 0.2 millimolar NO3 for 20 hours, NR was detected almost exclusively in epidermal cells, even though substantial amounts of NO3 likely were being transported through cortical and steler cells during transit to the vascular system. Although NR was present in all cell groups of roots exposed to 20.0 millimolar NO3, the majority of the NR still was contained in epidermal cells. The results are consistent with previous observations indicating that limited reduction of endogenous NO3 occurs during uptake and reduction of exogenous NO3. Several mechanisms are advanced to account for the restricted capacity of cortical and stelar cells to induce NR and reduce NO3. It is postulated that (a) the biochemical system involved in the induction of NR in the cortex and stele is relatively insensitive to the presence of NO3, (b) the receptor for the NR induction response and the NR protein are associated with cell plasmalemmae and little NO3 is taken up by cells of the cortex and stele, and/or (c) NO3 is compartmentalized during transport through the symplasm, which limits exposure for induction of NR and NO3 reduction.  相似文献   

9.
Sulfur deprivation and nitrogen metabolism in maize seedlings   总被引:12,自引:1,他引:11       下载免费PDF全文
The objective of this experiment was to elucidate the manner in which N metabolism is influenced by S nutrition. Maize (Zea mays L.) seedlings supplied with Hoagland solution minus SO42− exhibited S deficiency symptoms 12 days after emergence. Prior to development of these symptoms, a decline in leaf blade nitrate reductase (NR, EC 1.6.6.1) activity was observed in S-deprived seedlings compared to normal seedlings. Twelve days after emergence, in vitro NR activity was diminished 50% compared to normal seedlings. Glutamine synthetase (EC 6.3.1.2) and NAD-glutamate dehydrogenase (EC 1.4.1.2) activities were less severely affected (19 and 13%, respectively, at day 12). NADP-glutamate dehydrogenase (EC 1.4.1.4) activity and leaf blade fresh weight were not altered by S deprivation. Concentrations of soluble protein and chlorophyll (a and b) in leaf blades were reduced 18 and 25%, respectively, at day 12. A significantly higher concentration of NO3-N was observed for leaf blade and stem (culms, leaf sheaths, and unfurled leaves) fractions (46 and 31%, respectively) in S-deprived plants. In contrast to the other parameters measured, NR activity in S-deprived seedlings could be readily restored to the normal level by addition of SO42−. The apparent preferential effect of S deprivation on NR activity could be causally related to the observed changes in NO3-N and soluble protein concentration.  相似文献   

10.
Membrane associated nitrate reductase (NR) was detected in plasma membrane (PM) fractions isolated by aqueous two-phase partitioning from barley (Hordeum vulgare L. var CM 72) roots. The PM associated NR was not removed by washing vesicles with 500 millimolar NaCl and 1 millimolar EDTA and represented up to 4% of the total root NR activity. PM associated NR was stimulated up to 20-fold by Triton X-100 whereas soluble NR was only increased 1.7-fold. The latency was a function of the solubilization of NR from the membrane. NR, solubilized from the PM fraction by Triton X-100 was inactivated by antiserum to Chlorella sorokiniana NR. Anti-NR immunoglobulin G fragments purified from the anti-NR serum inhibited NO3 uptake by more than 90% but had no effect on NO2 uptake. The inhibitory effect was only partially reversible; uptake recovered to 50% of the control after thorough rinsing of roots. Preimmune serum immunoglobulin G fragments inhibited NO3 uptake 36% but the effect was completely reversible by rinsing. Intact NR antiserum had no effect on NO3 uptake. The results present the possibility that NO3 uptake and NO3 reduction in the PM of barley roots may be related.  相似文献   

11.
P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F. The mutant FS1-555 showed the highest solubilization in the presence of F, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F, indicating that mutagenesis allowed the acquisition of F tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.  相似文献   

12.
The nr1 soybean (Glycine max [L.] Merr.) mutant does not contain the two constitutive nitrate reductases, one of which is responsible for enzymic conversion of nitrite to NOx (NO + NO2). It was tested for possible nonenzymic NOx formation and evolution because of known chemical reactions between NO2 and plant metabolites and the instability of nitrous acid. It did not evolve NOx during the in vivo NR assay, but intact leaves did evolve small amounts of NOx under dark, anaerobic conditions. Experiments were conducted to compare NO3 reduction, NO2 accumulation, and the NOx evolution processes of the wild type (cv Williams) and the nr1 mutant. In vivo NR assays showed that wild-type leaves had three times more NO3 reducing capacity than the nr1 mutant. NOx evolution from intact, anerobic nr1 leaves was approximately 10 to 20% that from wild-type leaves. Nitrite content of the nr1 mutant leaves was usually higher than wild type due to low NOx evolution. Lag times and threshold NO2 concentrations for NOx evolution were similar for the two genotypes. While only 1 to 2% of NOx from wild type is NO2, the nr1 mutant evolved 15 to 30% NO2. The kinetic patterns of NOx evolution with time weré completely different for the mutant and wild type. Comparisons of light and heat treatments also gave very different results. It is generally accepted that the NOx evolution by wild type is primarily an enzymic conversion of NO2 to NO. However, this report concludes that NOx evolution by the nr1 mutant was due to nonenzymic, chemical reactions between plant metabolites and accumulated NO2 and/or decomposition of nitrous acid. Nonenzymic NOx evolution probably also occurs in wild type to a degree but could be easily masked by high rates of the enzymic process.  相似文献   

13.
The primary leaves from corn seedlings grown for 6 days were harvested, frozen with liquid N2 and extracted in a Tris buffer (pH 8.5, 250 millimolar) containing 1 millimolar dithiothreitol, 10 millimolar cysteine, 1 millimolar EDTA, 20 micromolar flavin adenine dinucleotide and 10% (v/v) glycerol. Nitrate reductase (NR) in the crude extract was stable for several days at 0°C and for several months at −80°C. The enzyme was purified using (NH4)2SO4 fractionation, brushite-hydroxyl-apatite chromatography and blue-sepharose affinity chromatography. The enzyme was eluted from the blue-sepharose column with a linear gradient of NADH (0-100 micromolar) or with 0.3 molar KNO3. About 10% of the original activity was recovered with NADH (NADH-NR). It had a specific activity of about 60 to 70 units (micromoles NO2 per minute per milligram protein). A sequential elution with NADH followed by KNO3 (0.3 molar) or KCl (0.3 molar) yielded 2 peaks. Rechromatography of each peak gave two peaks again. These results indicate that we are dealing with two forms of the same enzyme rather than two different NR proteins. The two NRs had different molecular weights as judged by chromatography on Toyopearl. The NADH-NR was more sensitive than the NO3-NR to antibody prepared against barley leaf NR. In Ouchterlony assays a single precipitin line, with completely fused boundaries, was observed.  相似文献   

14.
Background and AimsNitrogen fixation in legumes requires tight control of carbon and nitrogen balance. Thus, legumes control nodule numbers via an autoregulation mechanism. ‘Autoregulation of nodulation’ mutants super-nodulate are thought to be carbon-limited due to the high carbon-sink strength of excessive nodules. This study aimed to examine the effect of increasing carbon supply on the performance of super-nodulation mutants.MethodsWe compared the responses of Medicago truncatula super-nodulation mutants (sunn-4 and rdn1-1) and wild type to five CO2 levels (300–850 μmol mol−1). Nodule formation and nitrogen fixation were assessed in soil-grown plants at 18 and 42 d after sowing.Key ResultsShoot and root biomass, nodule number and biomass, nitrogenase activity and fixed nitrogen per plant of all genotypes increased with increasing CO2 concentration and reached a maximum at 700 μmol mol−1. While the sunn-4 mutant showed strong growth retardation compared with wild-type plants, elevated CO2 increased shoot biomass and total nitrogen content of the rdn1-1 mutant up to 2-fold. This was accompanied by a 4-fold increase in nitrogen fixation capacity in the rdn1-1 mutant.ConclusionsThese results suggest that the super-nodulation phenotype per se did not limit growth. The additional nitrogen fixation capacity of the rdn1-1 mutant may enhance the benefit of elevated CO2 for plant growth and N2 fixation.  相似文献   

15.
Effects of NO2, ClO3, and ClO2 on the induction of nitrate transport and nitrate reductase activity (NRA) as well as their effects on NO3 influx into roots of intact barley (Hordeum vulgare cv Klondike) seedlings were investigated. A 24-h pretreatment with 0.1 mol m−3 NO2 fully induced NO3 transport but failed to induce NRA. Similar pretreatments with ClO3 and ClO2 induced neither NO3 transport nor NRA. Net ClO3 uptake was induced by NO3 but not by ClO3 itself, indicating that NO3 and ClO3 transport occur via the NO3 carrier. At the uptake step, NO2 and ClO2 strongly inhibited NO3 influx; the former exhibited classical competitive kinetics, whereas the latter exhibited complex mixed-type kinetics. ClO3 proved to be a weak inhibitor of NO3 influx (Ki = 16 mol m−3) in a noncompetitive manner. The implications of these findings are discussed in the context of the suitability of these NO3 analogs as screening agents for the isolation of mutants defective in NO3 transport.  相似文献   

16.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

17.
Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots.  相似文献   

18.
Achromobacter denitrificans YD35 is an NO2-tolerant bacterium that expresses the aconitase genes acnA3, acnA4, and acnB, of which acnA3 is essential for growth tolerance against 100 mm NO2. Atmospheric oxygen inactivated AcnA3 at a rate of 1.6 × 10−3 min−1, which was 2.7- and 37-fold lower compared with AcnA4 and AcnB, respectively. Stoichiometric titration showed that the [4Fe-4S]2+ cluster of AcnA3 was more stable against oxidative inactivation by ferricyanide than that of AcnA4. Aconitase activity of AcnA3 persisted against high NO2 levels that generate reactive nitrogen species with an inactivation rate constant of k = 7.8 × 10−3 min−1, which was 1.6- and 7.8-fold lower than those for AcnA4 and AcnB, respectively. When exposed to NO2, the acnA3 mutant (AcnA3Tn) accumulated higher levels of cellular citrate compared with the other aconitase mutants, indicating that AcnA3 is a major producer of cellular aconitase activity. The extreme resistance of AcnA3 against oxidation and reactive nitrogen species apparently contributes to bacterial NO2 tolerance. AcnA3Tn accumulated less cellular NADH and ATP compared with YD35 under our culture conditions. The accumulation of more NO by AcnA3Tn suggested that NADH-dependent enzymes detoxify NO for survival in a high NO2 milieu. This novel aconitase is distributed in Alcaligenaceae bacteria, including pathogens and denitrifiers, and it appears to contribute to a novel NO2 tolerance mechanism in this strain.  相似文献   

19.
The objective of this study was to identify factors which limit leaf nitrate reductase (NR) activity as decline occurs during flowering and beginning seed development in soybean (Glycine max [L.] Merr. cv Clark). Level of NR enzyme activity, level of reductant, and availability of NO3 as substrate were evaluated for field-grown soybean from flowering through leaf senescence. Timing of reproductive development was altered within one genotype by (a) exposure of Clark to an artificially short photoperiod to hasten flowering and podfill, and (b) the use of an early flowering isoline. Nitrogen (N) was soil-applied to selected plots at 500 kilograms per hectare as an additional variable. Stem NO3 concentration and in vivo leaf NR activity were significantly correlated (R2 = 0.69 with nitrate in the assay medium and 0.74 without nitrate in the medium at P = 0.001) across six combinations of reproductive and soil N-treatment. The supply of NO3 from the root to the leaf tissue was the primary limitation to leaf NR activity during flowering and podfill. Levels of NR enzyme and reductant were not limiting to leaf NR activity during this period.  相似文献   

20.
Since NO3 availability in the rooting medium seriously limits symbiotic N2 fixation by soybean (Glycine max [L.] Merr.), studies were initiated to select nodulation mutants which were more tolerant to NO3 and were adapted to the Midwest area of the United States. Three independent mutants were selected in the M2 generation from ethyl methanesulfonate or N-nitroso-N-methylurea mutagenized Williams seed. All three mutants (designated NOD1-3, NOD2-4, and NOD3-7) were more extensively nodulated (427 to 770 nodules plant−1) than the Williams parent (187 nodules plant−1) under zero-N growth conditions. This provided evidence that the mutational event(s) affected autoregulatory control of nodulation. Moreover, all three mutants were partially tolerant to NO3; each retained greater acetylene reduction activity when grown hydroponically with 15 millimolar NO3 than did Williams at 1.5 millimolar NO3. The NO3 tolerance did not appear to be related to an altered ability to take up or metabolize NO3, based on solution NO3 depletion and on in vivo nitrate reductase assays. Enhanced nodulation appeared to be controlled by the host plant, being consistent across four Bradyrhizobium japonicum strains tested. In general, the mutant lines produced less dry weight than the control, with root dry weights being more affected than shoot dry weights. The nodulation trait has been stable through the M5 generation in all three mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号