首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of dissolved inorganic carbon (DIC) from a nutrient solution by willow roots was measured in light and darkness and the distribution in the plant of DIC taken up by the roots was determined. It was also studied whether the transport system could be activated by preincubation with dissolved inorganic carbon.
Willow plants ( Salix cv. Aquatica gigantea) grown in hydroponic culture media were preincubated for 2 days with or without 0.74 mM NaHCO3. After preincubation, either unlabelled or [14C]-labelled NaHCO3 was injected into the media and after 1, 5, 10 and 24 h either in light or in darkness the plants were harvested in pieces into liquid nitrogen, lyophilized and burned in a combustion chamber.
14C was transported through the roots to the shoots and leaves both in light and in darkness, although incorporation of 14C in darkness was only half of that in light at the end of the 24-h feeding period. Both in light and in darkness the amount of 14C increased in all parts of willow plants with time. In light the rate of labelling was highest into cuttings and shoots. In darkness more than half of the total label was detected in cuttings of both the non-activated and the activated treatments.
In the shoots the middle part was most strongly labelled after 5 and 10 h, but after 24 h 14C moved towards the base of the shoot. In the leaves at all feeding times most radioactivity was incorporated into the young, fully open leaves on the upper part of the shoots. Preincubation of plants with unlabelled NaHCO3 in growth media had no clear effect on the rate of DIC uptake either in light or in darkness.  相似文献   

2.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   

3.
1. Both the pelagic and benthic net dissolved inorganic carbon (DIC) productions were measured in situ on four occasions from June to September 2004, in the unproductive Lake Diktar-Erik in subarctic Sweden. The stable isotopic signal ( δ 13C) of respired organic material was estimated from hypolimnion water data and data from a laboratory incubation using epilimnion water.
2. Both pelagic and benthic habitats were net heterotrophic during the study period, with a total net DIC production of 416 mg C m−2 day−1, of which the pelagic habitat contributed approximately 85%. The net DIC production decreased with depth both in the pelagic water and in the sediments, and most of the net DIC production occurred in the upper water column.
3. Temporal variations in both pelagic and benthic DIC production were small, although we observed a significant decrease in pelagic net DIC production after the autumn turnover. Water temperature was the single most important factor explaining temporal and vertical variations in pelagic DIC production. No single factor explained more than 10% of the benthic net DIC production, which probably was regulated by several interacting factors.
4. Pelagic DIC production, and thus most of the whole-lake net production of DIC, was mainly due to the respiration of allochthonous organic carbon. Stable isotope data inferred that nearly 100% of accumulated DIC in the hypolimnion water had an allochthonous carbon source. Similarly, in the laboratory incubation using epilimnion water, c. 85% of accumulated DIC was indicated to have an allochthonous organic carbon source.  相似文献   

4.
Some physiological characteristics of photosynthetic inorganic carbon uptake have been examined in the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Both species demonstrated a high affinity for inorganic carbon in photosynthesis at pH7.5, having K1/2(CO2) in the range 1.0 to 4.0mmol m?3 and O2? and temperature-insensitive CO2 compensation concentrations in the range 10.8 to 17.6 cm3 m?3. Intracellular accumulation of inorganic carbon was found to occur in the light; at an external pH of 7.5 the concentration in P. tricornutum was twice, and that in Cyclotella 3.5 times, the concentration in the suspending medium. Carbonic anhydrase (CA) was detected in intact Cyclotella cells but not in P. tricornutum, although internal CA was detected in both species. The rates of photosynthesis at pH 8.0 of P. tricornutum cells and Cyclotella cells treated with 0.1 mol m?3 acetazolamide, a CA inhibitor, were 1.5- to 5-fold the rate of CO2 supply, indicating that both species have the capacity to take up HCO3? as a source of substrate for photosynthesis. No Na+ dependence for HCO3? could be detected in either species. These results indicate that these two marine diatoms have the capacity to accumulate inorganic carbon in the light as a consequence, in part, of the active uptake of bicarbonate.  相似文献   

5.
Physiological properties of photosynthesis were determined in the marine diatom, Phaeodactylum tricornutum UTEX640, during acclimation from 5% CO2 to air and related to H2CO3 dissociation kinetics and equilibria in artificial seawater. The concentration of dissolved inorganic carbon at half maximum rate of photosynthesis (K0·5[DIC]) value in high CO2‐grown cells was 1009 mmol m ? 3 but was reduced three‐fold by the addition of bovine carbonic anhydrase (CA), whereas in air‐grown cells K0·5[DIC] was 71 mmol m ? 3, irrespective of the presence of CA. The maximum rate of photosynthesis (Pmax) values varied between 300 and 500 μ mol O2 mg Chl ? 1 h ? 1 regardless of growth pCO2. Bicarbonate dehydration kinetics in artificial seawater were re‐examined to evaluate the direct HCO3 ? uptake as a substrate for photosynthesis. The uncatalysed CO2 formation rate in artificial seawater of 31·65°/oo of salinity at pH 8·2 and 25 °C was found to be 0·6 mmol m ? 3 min ? 1 at 100 mmol m ? 3 DIC, which is 53·5 and 7·3 times slower than the rates of photosynthesis exhibited in air‐ and high CO2‐grown cells, respectively. These data indicate that even high CO2‐grown cells of P. tricornutum can take up both CO2 and HCO3 ? as substrates for photosynthesis and HCO3 ? use improves dramatically when the cells are grown in air. Detailed time courses were obtained of changes in affinity for DIC during the acclimation of high CO2‐grown cells to air. The development of high‐affinity photosynthesis started after a 2–5 h lag period, followed by a steady increase over the next 15 h. This acclimation time course is the slowest to be described so far. High CO2‐grown cells were transferred to controlled DIC conditions, at which the concentrations of each DIC species could be defined, and were allowed to acclimate for more than 36 h. The K0·5[DIC] values in acclimated cells appeared to be correlated only with [CO2(aq)] in the medium but not to HCO3 ? , CO32 ? , total [DIC] or the pH of the medium and indicate that the critical signal regulating the affinity of cells for DIC in the marine diatom, P. tricornutum, is [CO2(aq)] in the medium.  相似文献   

6.
梁轩  汪智军  袁道先  杨平恒  贺秋芳 《生态学报》2013,33(10):3031-3038
自2010年7月至2011年7月对重庆青木关岩溶区典型植被下的土壤水进行了月动态取样,分析了土壤水溶解无机碳含量(DIC浓度)及其稳定碳同位素组成(δ13CDIC值)的时空变化特征,以揭示岩溶土壤系统碳酸盐岩溶蚀作用及其碳汇效应。研究结果表明:草地和针叶林地土壤水的DIC浓度和δ13CDIC值相对较低,分别为59.12 mg/L和-17.22‰,31.47 mg/L和-16.37‰;而旱地、灌丛地、退耕还林地土壤水具有较高的DIC浓度和δ13CDIC值,分别达153.88 mg/L和-12.2‰,221.82 mg/L和-11.9‰,97.30 mg/L和-11.23‰,其中灌丛和退耕还林地的δ13CDIC值与DIC浓度呈正比,且雨季较旱季偏高约4‰—5‰。根据δ13CDIC值,结合各植被类型下土壤水DIC浓度与其相应的土壤碳酸盐含量呈正相关,判断旱地、灌丛地、退耕还林地等岩溶土壤水中的DIC主要来自土壤中碳酸盐岩矿物的碳酸溶蚀,即岩溶土壤中存在着碳酸盐岩碳酸溶蚀作用,从而在一定程度上减少了土壤系统向大气排放的CO2量。  相似文献   

7.
杨平  金宝石  谭立山  仝川 《生态学报》2018,38(6):1994-2006
以福建闽江和九龙江河口陆基养虾塘为研究对象,通过野外原位观测和室内模拟培养实验,开展了河口陆基养虾塘养殖期间水体溶解性有机碳(DOC)和溶解性无机碳(DIC)及养虾塘沉积物-水界面碳交换通量变化特征的研究。结果表明:时间变化上,养虾塘水体溶解性碳浓度及沉积物-水界面碳通量在闽江河口呈现8月中旬10月中旬6月中旬的特征,在九龙江河口表现为随养殖阶段推移而增加的趋势;空间变化上,闽江河口养虾塘水体溶解性碳浓度及沉积物-水界面碳通量显著高于九龙江河口;沉积物释放溶解性碳速率与水体溶解性碳浓度呈现显著正相关关系,沉积物碳释放过程是引起养虾塘水体溶解性碳浓度时空变化的重要因素。表明河口区水产养虾塘碳循环研究时需考虑不同形态碳生物地球化学循环的时空差异性。  相似文献   

8.
Photosynthesis by marine diatoms contributes significantly to the global carbon cycle. Due to the low concentration of CO2 in seawater, many diatoms use extracellular carbonic anhydrase (eCA) to enhance the supply of CO2 to the cell surface. While much research has investigated how the requirement for eCA is influenced by changes in CO2 availability, little is known about how eCA contributes to CO2 supply following changes in the demand for carbon. We therefore examined how changes in photosynthetic rate influence the requirement for eCA in three centric diatoms. Modeling of cell surface carbonate chemistry indicated that diffusive CO2 supply to the cell surface was greatly reduced in large diatoms at higher photosynthetic rates. Laboratory experiments demonstrated a trend of an increasing requirement for eCA with increasing photosynthetic rate that was most pronounced in the larger species, supporting the findings of the cellular modeling. Microelectrode measurements of cell surface pH and O2 demonstrated that individual cells exhibited an increased contribution of eCA to photosynthesis at higher irradiances. Our data demonstrate that changes in carbon demand strongly influence the requirement for eCA in diatoms. Cell size and photosynthetic rate will therefore be key determinants of the mode of dissolved inorganic carbon uptake.  相似文献   

9.
In studies on internal CO2 transport, average xylem sap pH (pHx) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([]). Lack of detailed pHx measurements at high temporal resolution could be a potential source of error when evaluating [] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (Tstem), complemented with pHx measurements at 30‐min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid‐spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pHx to calculate [] based on Tstem and the corresponding measured [CO2]. No statistically significant difference was found between mean [] calculated with instantaneous pHx and daily average pHx. However, using an average pHx value from a different part of the growing season than the measurements of [CO2] and Tstem to estimate [] led to a statistically significant error. The error varied between 3.25 ± 0.01% under‐estimation and 3.97 ± 0.01% over‐estimation, relative to the true [] data. Measured pHx did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pHx (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [] will negatively affect pHx. Our results are the first quantifying the error in [] due to the interaction between [CO2] and pHx on a seasonal time scale. We found significant changes in pHx across the growing season, but overall the effect on the calculation of [] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pHx is in the more sensitive range (pHx > 6.5).  相似文献   

10.
11.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

12.
Dissolved organic carbon (DOC) photochemical reactions establish important links between DOC and planktonic bacteria. We hypothesize that seasonal changes in DOC quality, related to the flood pulse, drive the effects of light-DOC interactions on uptake by planktonic bacteria uptake in clear-water Amazonian ecosystems. Water samples from two ecosystems (one lake and one stream) were incubated in sunlight during different hydrological periods and were then exposed to bacterial degradation. Photochemical and bacterial degradation were driven by seasonal DOC inputs. Bacterial mineralization was the main degradation pathway of autochthonous DOC in the lake, while allochthonous DOC was more available for photochemical oxidation. We suggest that sunlight enhances the bacterial uptake of refractory DOC but does not alter uptake of labile forms. We also observed a positive relationship between sunlight and bacterial degradation of DOC, instead of competition. We conclude that photochemical reactions and bacteria complementarily degrade the different sources of DOC during the flood pulse in Amazonian clear-water aquatic ecosystems.  相似文献   

13.
 Chemical and stable carbon isotopic analyses of dissolved inorganic carbon (DIC) were carried out for groundwater samples collected from cold springs and shallow wells in the Unzen volcanic region in 1999 and 2000. All of the data sets plotted on the carbon isotope ratio (δ13C) vs 1/DIC diagram can be explained by mixing of volcanic CO2 with DIC equilibrated with soil CO2. Groundwater DIC showing a high mixing ratio of volcanic CO2 appears to have a tendency to distribute along two major faults near the activity center of the 1990–1995 eruption. This suggests that these faults are escape routes of volcanic CO2 diffused into the volcanic edifice. The total flux of the volcanic DIC discharged from the cold springs is shown to be one to two orders of magnitude lower than the roughly estimated flux of volcanic CO2 discharged from the summit during the eruptive period. Received: November 10, 2001 / Accepted: June 6, 2002 Acknowledgments The Unzen Scientific Drilling Project, Ministry of Education, Culture, Sports, Science and Technology (Japan), provided funding. We acknowledge G. Lyon and W. Gooley for stable carbon isotope measurement, K. Amita for DIC analysis, and students of Kyoto University and Okayama University of Science for assistance in field work. Correspondence to:S. Ohsawa  相似文献   

14.
Summary Photosynthetic kinetics with respect to dissolved inorganic carbon were used to predict the outcome of competition for DIC between the green alga Selenastrum minutum and the cyanobacterium Synechococcus leopoliensis at pH 6.2, 7.5, and 10. Based on measured values of the maximum rate of photosynthesis, the half-saturation value of photosynthesis with respect to DIC (K 1 2/DIC ), and the DIC compensation point, it was predicted that S. leopoliensis would lower the steady-state DIC concentration below the DIC compensation point of S. minutum. This should result in competitive displacement of the green alga at a rate equivalent to the chemostat dilution rate. This prediction was validated by carrying out competition experiments over the range of pH. These results suggest that the low levels of DIC in air-equilibrated acidified lakes may be an important rate-limiting resource and hence affect phytoplankton community structure. Furthermore, the low levels of DIC in these systems may be below the DIC compensation point for some species, thereby precluding their growth at acid pH solely as a function of DIC limitation. The potential importance of DIC in shaping phytoplankton community structure in acidified systems is discussed.Abbreviations growth rate - max maximum growth rate - K concentration of dissolved inorganic carbon required to maintain half-maximal rate of growth - K 1 2/DIC concentration of dissolved inorganic carbon required to maintain half-maximal photosynthesis - DIC dissolved inorganic carbon - P max maximum rate of photosynthesis - R * substrate concentration required for an organism to maintain a growth rate equal to the mortality rate - DIC compensation point (DIC) concentration where gross photosynthesis equals respiration - i.e. net photosynthesis equals zero  相似文献   

15.
Iinvestigated controls of stream dissolved inorganic carbon (DIC) sources andcycling along a stream size and productivity gradient in a temperate forestedwatershed in northern California. Dissolved CO2 (CO2(aq))dynamics in heavily shaded streams contrasted strongly with those of larger,open canopied sites. In streams with canopy cover > 97%, CO2 (aq)was highest during baseflow periods (up to 540 M) and wasnegatively related to discharge. Effects of algal photosynthesis on CO2(aq) were minimal and stream CO2 (aq) was primarily controlledby groundwater CO2 (aq) inputs and degassing losses to theatmosphere. In contrast to the small streams, CO2 (aq) in larger,open-canopied streams was often below atmospheric levels at midday duringbaseflow and was positively related to discharge. Here, stream CO2(aq) was strongly influenced by the balance between autotrophic andheterotrophic processes. Dynamics of HCO3 werelesscomplex. HCO3 and Ca2+ were positivelycorrelated, negatively related to discharge, and showed no pattern with streamsize. Stable carbon isotope ratios of DIC (i.e. 13C DIC)increased with stream size and discharge, indicating contrasting sources of DICto streams and rivers. During summer baseflows, 13C DIC were13C-depleted in the smallest streams (minimum of–17.7) due to the influence of CO2 (aq) derived frommicrobialrespiration and HCO3 derived from carbonateweathering. 13C DIC were higher (up to –6.6)inthe larger streams and rivers due to invasion of atmospheric CO2enhanced by algal CO2 (aq) uptake. While small streams wereinfluenced by groundwater inputs, patterns in CO2 (aq) and evidencefrom stable isotopes demonstrate the strong influence of stream metabolism andCO2 exchange with the atmosphere on stream and river carbon cycles.  相似文献   

16.
Submerged aquatic macrophytes grow across a wide, often coupled, range of light and inorganic carbon availabilities, and each single factor influences photosynthesis and acclimation. Here we examine the interactive effects of light and inorganic carbon on the growth of Elodea canadensis and Callitriche cophocarpa. The plants were grown in the laboratory at a range of light intensities (0–108 μmol m−2s−1) and four inorganic carbon regimes in a crossed factorial design. Plant growth rates, measured over 3–4 weeks of incubation, increased in response to increasing light intensity and inorganic carbon availability, and significant interactive effects were observed. The light-use efficiency for growth at low light increased 2-fold for Callitriche and 6-fold for Elodea between the lowest and highest inorganic carbon concentrations applied. Also, the growth rate at the highest light intensity increased with inorganic carbon availability, but the relative increase was smaller than at low light. Both species acclimated to the light and carbon regime such that the chlorophyll content declined at low and high light intensities and the initial slopes of the photosynthetic CO2 and HCO3 response curves declined at high levels of CO2. Callitriche responded less markedly than Elodea to changing inorganic carbon availability during growth, and the initial slope of the photosynthetic HCO3 response curve, in particular, was greatly reduced (>90%) in Elodea by high CO2. It is suggested that the coupled responses of aquatic macrophytes to light and inorganic carbon influence their ability to develop dense stands at high light in shallow water and to extend to greater depths in waters rich in inorganic carbon.  相似文献   

17.
18.
19.
20.
Abstract. The uptake and accumulation of inorganic carbon has been investigated in Chlorella ellipsoidea cells grown at acid or alkaline pH. Carbonic anhydrase (CA) was detected in ceil extracts but not in intact cells and CA activity in acid-grown cells was considerably less than that in alkali-grown cells. Both cell types demonstrates low K1/2 (CO2) values in the range pH 7.0–8.0 and these were unaffected by O2 concentration. The CO2 compensation concentrations of acid- and alkali-grown cells suspended in aqueous media were not significantly different in the range of pH 6.0–8.0, but at pH 5.0, the CO2 compensation concentrations of acid-grown cells (57.4cm3 m−3) were lower than those of alkali-grown cells (79.2cm3 m−3). The rate of photo-synthetic O2 evolution in the range pH 7.5–8.0 exceeded the calculated rate of CO2 supply two- to three-fold, in both acid- and alkali-grown cells, indicating that HCO3 was taken up by the cells. Accumulation of inorganic carbon was measured at pH 7.5 by silicone-oil centri-fugation, and the concentration of unfixed inorganic carbon was found to be 5.1 mol m−3 in acid-grown and 6.4mol m−3 in alkali-grown cells. These concentrations were 4.6- and 5.9-fold greater than in the external medium. These results indicate that photorespiration is suppressed in both acid- and alkali-grown cells by an intracellular accumulation of inorganic carbon due, in part, to an active uptake of bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号