首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microdialysis zero-net-flux (ZNF) method is commonly used to monitor drug-induced changes in neurotransmitter baseline and release/uptake processes. Recent studies in this field suggest that microdialysis ZNF method seriously underestimates the resting concentration of extracellular dopamine in the rat neostriatum because probe implantation preferentially damages nearby dopamine release sites and that dopamine uptake inhibition increases the relative recovery of dopamine by microdialysis. This study assessed the validity of these claims by examining current data on extracellular dopamine levels at rest and after drug application obtained by voltammetry, a technique thought to induce less tissue disruption than microdialysis. To obtain the extracellular baseline value for dopamine from the evoked overflow data, we modified the existing dopamine kinetic model to suit both the resting and stimulated circumstances. It was found that dopamine uptake inhibition did in fact decrease the microdialysis relative recovery of dopamine, implying that the average basal extracellular dopamine level is within the range of 7-20 nm in rat striatum. This study concludes that the microdialysis ZNF method indeed underestimates the extracellular dopamine concentration, although not by as much as had been thought. Chronic microdialysis damages both neurotransmitter release and uptake, but it does so in a somewhat relative and proportional way for both processes. Thus the validity of the microdialysis ZNF method is not seriously undermined.  相似文献   

2.
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.  相似文献   

3.
Intracerebral microdialysis is a popular technique for studying neurochemistry and neural circuits in various brain regions. Recent studies called into question the validity of the microdialysis zero-net-flux (ZNF) method by suggesting that this method significantly underestimates the basal level of extracellular dopamine as a result of the discreteness of dopamine release sites as well as the preferential damage to dopamine release over uptake. To identify which factor is most important in undermining the microdialysis ZNF measurements and the extent of underestimation, two mathematical models were developed to explore the influences of the discrete nature and the probe-induced impairment in the neurotransmitter release. The two models differ in their characterizations of the transmitter release as spatially discrete and homogeneous, respectively. Simulations using physiologically reasonable parameters for striatal dopamine systems indicate that the preferential release site damage surrounding the implanted probe is the most important determinant to the underestimation of the microdialysis ZNF concentration. Under normal physiological conditions, the discreteness of neurotransmitter release sites is of minor importance, except when neuronal degeneration occurs. It is concluded that homogeneous models can adequately describe microdialysis operating processes as long as the corresponding tissue damage parameters in such models are appropriately incorporated.  相似文献   

4.
Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.  相似文献   

5.
Abstract: Carbon fiber microelectrodes either were implanted directly into striatal tissue or were mounted into the outlet of microdialysis probes that were implanted into striatal tissue. This allowed voltammetry and microdialysis to be used under identical in vivo experimental conditions to monitor extracellular dopamine levels during electrical stimulation of the medial forebrain bundle both before and after uptake inhibition with nomifensine. The marked differences between the results obtained with each technique cannot be explained on the basis of their inherent analytical attributes (sensitivity, temporal response, etc.). The results demonstrate that the microdialysis recovery factor for endogenous dopamine increases after uptake inhibition, an observation that stands in contradiction to the existing theory and practice of the microdialysis technique. The observations led to the development of a numerical model that rationalizes the observations reported herein and that allows in vivo voltammetry and in vivo microdialysis results to be interpreted within a single theoretical framework.  相似文献   

6.
Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI.  相似文献   

7.
Summary 1. The neurotransmitter mechanisms regulating neuroendocrine processes have been traditionally inferred from the effects of drugs purportedly acting through specific transmitter systems. The direct appraisal of changes in endogenous neuromediators had to rely initially on analyses of brain samples obtained post-morten.2. Currently, a more physiological assessment is available through the monitoring ot the extracellular levels of neurotransmitters and their metabolites in discrete brain areas of living animals. Two methodologies, namely in vivo voltammetry and microdialysis, are being increasingly used for this purpose. This article summarizes their principles, relative merits, and limitations and presents some relevant applications.3. Thus, microdialysis data show a differential response in the amphetamine-induced dopamine release in the nucleus accumbens in adult male and female rats castrated prepuberally. Given their high time-resolution, in vivo electrochemistry techniques seem especially suited for studying the fast, non-genomic effects of steroid hormones. This is illustrated by the voltammetric detection of a rapid release of dopamine in the corpus striatum induced by progesterone in males.4. These methodologies should be regarded as complementary tools for the assessment of the neurochemical correlates of neuroendocrine interactions.  相似文献   

8.
Hypoxia at birth is a major source of brain damage and it is associated with serious neurological sequelae in survivors. Alterations in the extracellular turnover of glutamate (Glu) and acetylcholine (ACh), two neurotransmitters that are essential for normal hippocampal function and learning and memory processes, may contribute to some of the neurological effects of perinatal hypoxia. We set out to determine the immediate and long-lasting effects of hypoxia on the turnover of these neurotransmitters by using microdialysis to measure the extracellular concentration of Glu and ACh in hippocampus, when hypoxia was induced in rats at postnatal day (PD) 7, and again at PD30. In PD7 rats, hypoxia induced an increase in extracellular Glu concentrations that lasted for up to 2.5 h and a decrease in extracellular ACh concentrations over this period. By contrast, perinatal hypoxia attenuated Glu release in asphyxiated rats, inducing a decrease in basal Glu levels when these animals reached PD30. Unlike Glu, the basal ACh levels in these animals were greater than in controls at PD30, although ACh release was stimulated less strongly than in control animals. These results provide the first evidence of the initial and long term consequences of the hypoxia on Glu and ACh turnover in the brain, demonstrating that hypoxia produces significant alterations in hippocampal neurochemistry and physiology.  相似文献   

9.
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4?±?1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19?±?0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170?±?4 nM and reduced in vivo extraction fraction to 0.112?±?0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.  相似文献   

10.
Abstract: Voltammetric microelectrodes and microdialysis probes were used simultaneously to monitor extracellular dopamine in rat striatum during electrical stimulation of the medial forebrain bundle. Microelectrodes were placed far away (1 mm) from, immediately adjacent to, and at the outlet of microdialysis probes. In drug-naive rats, electrical stimulation (45 Hz, 25 s) evoked a robust response at microelectrodes far away from the probes, but there was no response at microelectrodes adjacent to and at the outlet of the probes. After nomifensine administration (20 mg/kg i.p.), stimulation evoked robust responses at all three microelectrode placements. These results demonstrate first that evoked release in tissue adjacent to microdialysis probes is suppressed in comparison with evoked release in tissue far away from the probes and second that equilibration of the dopamine concentration in the extracellular fluid adjacent to and far away from the probes is prevented by the high-affinity dopamine transporter. Hence, models of microdialysis, which assume the properties of tissue to be spatially uniform, require modification to account for the distance that separates viable sites of evoked dopamine release from the probe. We introduce new mass transfer resistance parameters that qualitatively explain the observed effects of uptake inhibition on stimulation responses recorded with microdialysis and voltammetry.  相似文献   

11.
1. Although microdialysis is a widely used approach for in vivo monitoring extracellular neurotransmitter concentrations, it has been previously limited in many cases by its poor temporal resolution. It is clear that when 10–30-min sampling is performed, short-lasting changes in extracellular neurotransmitter concentrations can be overlooked. Such a low sampling rate is necessary when combining microdialysis with the conventional analytical methods like high performance liquid chromatography.2. Since capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIFD) allows the detection of attomoles of neurotransmitters, the temporal resolution of microdialysis may be significantly improved: high sampling rates, in the range of 5 s to 1 min, have been already reported by our group and others using CE-LIFD for simultaneously analyzing catecholamines and amino acids in microdialysates.3. The power of combining microdialyis and CE-LIFD is shown, using examples of physiological and pharmacological studies dealing with the dynamics of in vivo efflux processes and/or interactions between neurotransmitters.  相似文献   

12.
Abstract: The uptake of Ca2+ by a K+-depolarized rat brain cerebral cortical crude synaptosomal preparation (P2 fraction) was investigated. The characteristics of the Ca2+ uptake system are similar to those observed by other investigators. The preparation is also a suitable model with which to study the effects of adenosine on Ca2+ uptake and neurotransmitter release, as it is generally accepted that K+-evoked Ca2+ uptake is intimately related to depolarization-induced release of neurotransmitters. We have demonstrated that an extracellular receptor is involved in mediating the adenosine-evoked inhibition of K+-evoked Ca2+ uptake. The pharmacological properties of the receptor suggest that it may be similar in some respects to the A2-receptor associated with adenylate cyclase. The adenosine uptake inhibitor, dipyridamole, potentiated the action of adenosine, suggesting that re-uptake is important in controlling the extracellular adenosine concentration and thus in the regulation of the adenosine receptor. The adenosine receptor antagonist theophylline inhibited the effects of adenosine. Calmodulin inhibited K+- evoked uptake of Ca2+ by the synaptosomal fraction.  相似文献   

13.
The purpose of this study was to examine and validate the use of microdialysis for sampling and pharmacologically manipulating extracellular amino acids in the brain. Repeated use of microdialysis probes in acute intracerebral experiments did not significantly alter the relative recovery in vitro for the amino acids quantitated (GABA, aspartate, glutamate, glycine, taurine, and alanine). Regional differences in basal levels of some of the amino acids were detected in dialysates collected from the dorsomedial hypothalamus, striatum, and frontal cortex. The percent in vitro recoveries for the amino acids from the probes used in the three regions were not significantly different suggesting that the regional differences in basal levels of amino acids were functionally derived and not a consequence of variations in probe recovery. Perfusion with nipecotic acid, an inhibitor of GABA uptake, resulted in selective elevations in extracellular GABA in the three regions studied. Conversely, perfusion with high-potassium, a depolarizing agent, resulted in significant elevations in not only extracellular GABA but also aspartate, glutamate, and taurine. Thus, microdialysis is a method which can be employed to assess and to pharmacologically manipulate extracellular amino acids in the rat brain.  相似文献   

14.
The effects of iron-dependent peroxidation on respiration and neurotransmitter transport of brain nerve endings has been studied. Rat brain synaptosomes were peroxidized by exposure to an ADP-Fe/ascorbate system and the protective effect of added Se, Cd, or Zn was investigated with regard to dopamine and gamma-aminobutyric acid (GABA) transport. Peroxidation impaired the respiration of synaptosomes by about 20% and caused a marked increase in dopamine uptake; but in contrast, peroxidation induced a large decrease in synaptosomal uptake of GABA. The increased dopamine transport into synaptosomes was partially prevented by the presence of Zn, Se, or Cd. The presence of Zn, Cd, or Se, in order of decreasing effectiveness, also slowed down ADP-Fe/ascorbate mediated peroxidation of synaptosomes. Peroxidation caused a significant inhibition of veratridine-dependent release of both dopamine and GABA from synaptosomes, but the KCl-dependent release of these neurotransmitters was not effected by peroxidation. These results implicate that peroxidation damage of nerve endings may lead to large changes in neurotransmitter transport thus resulting in an alteration in the function of the central nervous system.  相似文献   

15.
Abstract: The effect of graded levels of tissue hypoxia on the extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid has been monitored in vivo by microdialysis. Reproducible levels of decreased oxygen in the brain were obtained by increasing the rate of ventilation from the control value of 25/min to as high as 95/min. With increasing ventilatory rate, the oxygen pressure in the cortex decreased from ∼40 torr to 16 torr. As the oxygen pressure decreased stepwise from 40 to 27, 22, and 16 torr, the dopamine levels in the extracellular medium rose by 70, 90, and 150%, respectively, returning to baseline within a few minutes of return to control ventilation rates. Levels of the catabolic products 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid decreased with decreasing tissue oxygen. Unlike the dopamine levels, these catabolite levels continued to decrease through 30 min of recovery (to 50% of control), returning to baseline only after recovery periods of 1–2 h. These data suggest that hypoxia induces long-term alterations in the neurotransmitter turnover. The marked effects of mild tissue hypoxia (decrease of oxygen from 40 torr to 26 torr) on both the extracellular dopamine concentration and dopamine metabolism indicate that the metabolic consequences of decreased tissue oxygen pressure extend to higher values than generally appreciated.  相似文献   

16.
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.  相似文献   

17.
Nitric oxide (NO), formed from arginine by a specific neuronal NO synthase, is an important neurotransmitter in various regions of the central nervous system. While intracerebral microdialysis is an elegant technique to study local extracellular neurotransmitter concentrations in vivo, NO metabolites (nitrate, nitrite (NO(x))) are difficult to study at high temporal resolution because of low tissue concentrations and small sample volumes. We developed a sensitive fluorometric high-performance liquid chromatography (HPLC)-coupled NO(x) assay adapted for the use in brain microdialysate samples. The assay includes an initial enzymatic step in which nitrate is reduced to nitrite. Nitrite is acidified to N2O3, which reacts with 2,3-diaminonaphthalene to form 1-(H)-naphthotriazole. This reaction product can be readily isolated and quantitated by HPLC with fluorometric detection. The theoretical assay sensitivity is less than 1 nM, but numerous sources of contamination must be eliminated in the sampling and assaying process to reliably monitor brain NO(x) outflow by microdialysis.  相似文献   

18.
Two major neural cell types, glia, astrocytes in particular, and neurones can release chemical transmitters that act as soluble signalling compounds for intercellular communication. Exocytosis, a process which depends on an increase in cytosolic Ca2+ levels, represents a common denominator for release of neurotransmitters, stored in secretory vesicles, from these neural cells. While neurones rely predominately on the immediate entry of Ca2+ from the extracellular space to the cytosol in this process, astrocytes support their cytosolic Ca2+ increases by appropriating this ion from the intracellular endoplasmic reticulum store and extracellular space. Additionally, astrocytes can release neurotransmitters using a variety of non-vesicular pathways which are mediated by an assortment of plasmalemmal channels and transporters. Once a neuronal and/or astrocytic neurotransmitter is released into the extracellular space, it can activate plasma membrane neurotransmitter receptors on neural cells, causing autocrine and/or paracrine signalling. Moreover, chemical transmission is essential not only for homocellular, but also for heterocellular bi-directional communication in the brain. Further detailed understanding of chemical transmission will aid our comprehension of the brain (dys)function in heath and disease.  相似文献   

19.
The present study compared two different in vivo microdialysis methods which estimate the extracellular concentration of analytes at a steady state where there is no effect of probe sampling efficiency. Each method was used to estimate the basal extracellular concentration of dopamine (DA) in the nucleus accumbens of the rat. In the first method, DA is added to the perfusate at concentrations above and below the expected extracellular concentration (0, 2.5, 5, and 10 nM) and DA is measured in the dialysate from the brain to generate a series of points which are interpolated to determine the concentration of no net flux. Using this method, basal DA was estimated to be 4.2 +/- 0.2 nM (mean +/- SEM, n = 5). The slope of the regression gives the in vivo recovery of DA, which was 65 +/- 5%. This method was also used to estimate a basal extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) concentration in the nucleus accumbens of 5.7 +/- 0.6 microM, with an in vivo recovery of 52 +/- 11% (n = 5). A further experiment which extended the perfusate concentration range showed that the in vivo recovery of DA is significantly higher than the in vivo recovery of DOPAC (p less than 0.001), whereas the in vitro recoveries of DA and DOPAA are not significantly different from each other. The in vivo difference is thought to be caused by active processes associated with the DA nerve terminal, principally release and uptake of DA, which may alter the concentration gradient in the tissue surrounding the probe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In vivo microdialysis for nonapeptides in rat brain--a practical guide   总被引:7,自引:0,他引:7  
Microdialysis provides a direct approach to monitor changes in interneuronal communication by monitoring the fluctuation of local, extracellular concentrations of potential neurotransmitters/neuromodulators. The present article is based on more than 10 years experience in performing microdialysis experiments in freely moving animals with inexpensive self-made microdialysis probes and accessories for monitoring of intracerebral neuropeptide release. On the basis of this experience, we provide a guide for the construction of different types of microdialysis probes and their application. Furthermore, we give information about organizing and performing a microdialysis experiment that can easily be adapted to fit individual applications needs. Finally, on the basis of theoretical background information advantages as well as limitations of the microdialysis technique are discussed with the intent to provide help to potential users for designing an appropriate microdialysis experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号