首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational studies on three DNA-oligomers (d(CGCGCGTTAATT), d(CGCGTTAA) and d(CGCGCGTT) in solution by circular dichroism spectroscopy are reported. In low salt solution, all three DNA oligomers exhibit a characteristic B-conformation. However, under the influence of high salt concentration i.e. 5M NaCl, the octamer d(CGCGCGTT) exhibits 'A' conformation whereas the decamer and dodecamer retain B-conformation. On addition of millimolar amount of NiCl2 to the 5M NaCl, solution of oligodeoxynucleotides a B-Z transition is observed in octamer, decamer and dodecamer. However, NiCl2 titrations show that mid point of transition for dodecamer is at 2.25 mM, for decamer is at 13 mM NiCl2 and for octamer is 17 mM at NiCl2. In 60% alcohol all three oligonucleotides remain in the B-conformation. The melting temperatures of oligonucleotides at various salt concentration are also reported. Thermodynamic parameters calculated by melting profile using a two state model show that dodecamer and decamer are most stable in their 5M NaCl, B-form. However, octamer is more stable in its Z form than that of its 'A' form.  相似文献   

2.
The Helical structures of d(C-G-C-A-m5C-G-T-G-m5C-G), d(m5C-G-C-A-m5C-G-T-G-C-G) and d(C-2aminoA-C-G-T-G) were studied in aqueous solution at various salt concentrations and temperatures by 1H-NMR spectroscopy. In 0.1 M NaCl solution only the B form was evidenced for these DNA fragments whereas in 4 M NaCl both B and Z forms, in slow exchange on the NMR time scale, were observed. Under these conditions the Z form accounted for less than 60% of the decamer conformation; conversely d(C-G)3 hexamers containing methylated cytidines were predominantly in the Z form (greater than 90%) [Tran-Dinh et al. (1984) Biochemistry 23, 1362; Cavaillès et al. (1984) J. Biomol. Struct. Dyn. 1, 1347-1371]. On the other hand, d(C-2aminoA-C-G-T-G) in which the d(2aminoA) X dT base pair forms three hydrogen bonds, was found to adopt the Z conformation in 4M NaCl solution which was not the case for d(C-A-C-G-T-G) (unpublished results). The present study shows that the B in equilibrium Z transition in solution is highly sequence-dependent and that correlation exists between the stability of the duplexes (essentially governed by the number of hydrogen bonds between complementary bases) and their ability to adopt the Z conformation.  相似文献   

3.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

4.
B Hartmann  D Genest  N T Thuong  M Ptak  M Leng 《Biochimie》1986,68(5):739-743
The thermal stability of the hexanucleoside pentaphosphate d(br5CGbr5CGbr5CG) has been studied at two nucleotide concentrations, in the presence of 1 M NaClO4. At low nucleotide concentration (7 X 10(-5) M), circular dichroism experiments show a conformational transition from the Z conformation to another conformation, named X, which is not the B conformation, as the temperature is increased from 0 to 35 degrees C. Between 40 and 65 degrees C, another transition is observed which corresponds to the melting of the X conformation. At higher nucleotide concentration (2 X 10(-3) M), circular dichroism and 31P nuclear magnetic resonance experiments show that at low temperature (br5dC-dG)3 adopts the Z conformation. There are associations between the oligonucleotides which progressively disappear as the temperature increases. In the range 35-60 degrees C a transition from the Z conformation to another conformation is observed. This new conformation is the X conformation detected at low nucleotide concentration.  相似文献   

5.
The crystal structure of the alternating 5'-purine start decamer d(GCGCGCGCGC) was found to be in the left-handed Z-DNA conformation. Inasmuch as the A.T base pair is known to resist Z-DNA formation, we substituted A.T base pairs in the dyad-related positions of the decamer duplex. The alternating self-complementary decamer d(GCACGCGTGC) crystallizes in a different hexagonal space group, P6(1)22, with very different unit cell dimensions a = b = 38.97 and c = 77.34 A compared with the all-G.C alternating decamer. The A.T-containing decamer has one strand in the asymmetric unit, and because it is isomorphous to some other A-DNA decamers it was considered also to be right-handed. The structure was refined, starting with the atomic coordinates of the A-DNA decamer d(GCGGGCCCGC), by use of 2491 unique reflections out to 1.9-A resolution. The refinement converged to an R value of 18.6% for a total of 202 nucleotide atoms and 32 water molecules. This research further demonstrates that A.T base pairs not only resist the formation of Z-DNA but can also assist the formation of A-DNA by switching the helix handedness when the oligomer starts with a 5'-purine; also, the length of the inner Z-DNA stretch (d(CG)n) is reduced from an octamer to a tetramer. It may be noted that these oligonucleotide properties are in crystals and not necessarily in solutions.  相似文献   

6.
The oligonucleotides d(m5CGGCm5CG), d(CBr8GGCCBr8G) and d(CGCGGC) have been prepared and studied by infrared spectroscopy. The three sequences contain two GC pairs which are out of purine-pyrimidine alternation with the rest of the sequence. From the IR data of the d(m5CGGCm5CG) hexamer, it is shown that all of the dG residues adopt a syn conformation. The marker IR bands for the C3' endo syn conformation are at 1410, 1354, 1320 and 925 cm-1 whereas those for the C2' endo anti conformation at 1420, 1374 and 890 cm-1 are clearly absent. This result implies that the two adjacent guanines of the d(m5CGGCm5CG) sequence are in syn conformation. It is suggested that duplex formation occurs in d(CGCGGC) films and that all of the guanines are in syn conformation. In contrast, the central non-brominated guanine of the d(CBr8GGCCBr8G) hexamer is found in anti conformation, as expected in a Z type structure of the non-alternating region.  相似文献   

7.
Netropsin is bound to the DNA decamer d(CCCCCIIIII)2, the C-4 bromo derivative d(CCCBr5CCIIIII)2and the C-2 bromo derivative d(CBr5CCCCIIIII)2in a novel 2:1 mode. Complexes of the native decamer and the C-4 bromo derivative are isomorphous, space group P1, unit cell dimensions a = 32.56 A (32.66), b = 32.59 A (32.77), c = 37.64 A (37.71), alpha = 86.30 degrees (86.01 degrees), beta = 84.50 degrees (84.37 degrees), gamma = 68.58 degrees (68.90 degrees) with two independent molecules (A and B) in the asymmetric unit (values in parentheses are for the derivative). The C-2 bromo derivative is hexagonal P61, unit cell dimensions a = b = 32.13 A, c = 143.92, gamma = 120 degrees with one molecule in the asymmetric unit. The structures were solved by the molecular replacement method. The novelty of the structures is that there are two netropsins bound end-to-end in the minor groove of each B-DNA decamer which has nearly a complete turn. The netropsins are held by hydrogen bonding interactions to the base atoms and by sandwiching van der Waal's interactions from the sugar-phosphate backbones of the double helix similar to every other drug.DNA complex. Each netropsin molecule spans approximately 5 bp. The netropsins refined with their guanidinium heads facing each other at the center, although an orientational disorder for the netropsins cannot be excluded. The amidinium ends stretch out toward the junctions and bind to the adjacent duplexes in the columns of stacked symmetry-related complexes. Both cationic ends of netropsin are bridged by water molecules in one of the independent molecules (molecule A) of the triclinic structures and also the hexagonal structure to form pseudo-continuous drug.decamer helices.  相似文献   

8.
Alternating self-complementary oligonucleotides starting with a 5'-pyrimidine usually form left-handed Z-DNA; however, with a 5'-purine start sequence they form the right-handed A-DNA. Here we report the crystal structure of the decamer d(GCGCGCGCGC) with a 5'-purine start in the Z-DNA form. The decamer crystallizes in the hexagonal space group P6(5)22, unit cell dimensions a = b = 18.08 and c = 43.10 A, with one of the following four dinucleotide diphosphates in the asymmetric unit: d(pGpC)/d(GpCp)/d(pCpG)/d(CpGp). The molecular replacement method, starting with d(pGpC) of the isomorphous Z-DNA hexamer d(araC-dG)3 without the 2'-OH group of arabinose, was used in the structure analysis. The method gave the solution only after the sugar-phosphate conformation of the GpC step was manipulated. The refinement converged to a final R value of 18.6% for 340 unique reflections in the resolution range 8.0-1.9 A. A result of the sequence alternation is the alternation in the nucleotide conformation; guanosine is C3'-endo, syn, and cytidine is C2'-endo, anti. The CpG step phosphodiester conformation is the same as ZI or ZII, whereas that of the GpC step phosphodiester is "intermediate" in the sense that zeta (O3'-P bond) is the same as ZII but alpha (P-O5' bond) is the same as ZI. The duplexes generated from the dinucleotide asymmetric unit are stacked one on top of the other in the crystal to form an infinite pseudocontinuous helix. This renders it a quasi-polymerlike structure that has assumed the Z-DNA conformation further strengthened by the long inner Z-forming stretch d(CG)4. An interesting feature of the structure is the presence of water strings in both the major and the minor grooves. In the minor groove the cytosine carbonyl oxygen atoms of the GpC and CpG steps are cross-bridged by water molecules that are not themselves hydrogen bonded but are enclosed by the water rings in the mouth of the minor groove. In the major groove three independent water molecules form a zigzagging continuous water string that runs throughout the duplex.  相似文献   

9.
The B and the Z forms of the DNA hexamers d(m5C-G)3 and d(br5C-G)3 were investigated by means of NMR spectroscopy. It is demonstrated that the low-salt form of d(m5C-G)3 is a B DNA structure. The form, which becomes increasingly predominant when increasing amounts of MgCl2 and/or methanol are added to the solution, has Z DNA characteristics. It is shown that the major geometrical features of the Z form of d(m5C-G)3 in the crystal structure are maintained in solution, with the dC residues S sugar conformation, gamma + and the base in the anti orientation and the dG residues N (except the 3'-terminal residue), gamma t and syn. Neither the Z form of the methylated nor that of the brominated compound resembles the Z' form, in which the deoxy guanosine sugar rings adopt a C1'-exo conformation. Substitution of m5C by br5C causes no perceptible conformational changes in either the B or in the Z forms.  相似文献   

10.
Abstract

The oligonucleotides d(m5CGGCm5CG), d(CBr8GGCCBr8G) and d(CGCGGC) have been prepared and studied by infrared spectroscopy. The three sequences contain two GC pairs which are out of purine-pyrimidine alternation with the rest of the sequence. From the IR data of the dlm5CGGCmCG) hexamer, it is shown that all of the dG residues adopt a syn conformation. The marker IR bands for the C3′ endo syn conformation are at 1410, 1354, 1320 and 925 cm?1 whereas those for the C2′ endo and conformation at 1420, 1374 and 890 cm?1 are clearly absent. This result implies that the two adjacent guanines of the d(m5CGGCm5CG) sequence are in syn conformation. It is suggested that duplex formation occurs in d(CGCGGC) films and that all of the guanines are in syn conformation. In contrast, the central non-brominated guanine of the dlCBr8GGCCBr8G) hexamer is found in ami conformation, as expected in a Z type structure of the non-alternating region.  相似文献   

11.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

12.
The helical structures of d(C-G-m5C-G-C-G) were studied in aqueous solution at various salt concentrations and temperatures by CD and 1H-NMR spectroscopy. At room temperature only the B form is observed in 0.1 M NaCl whereas the B and Z forms are simultaneously present in 1.8 M NaCl. At high salt concentration (4 M NaCl) the Z form is largely predominant (greater than 95%). The Z form proton resonances were assigned by using the polarisation transfer method (between B and Z at 1.8 M NaCl) and by proton-proton decoupling (at high salt concentration). The Z-B-Coil transitions were studied as a function of temperature with the 1.8 M NaCl solution. At high temperature (95 degrees C) only the coil form (S) is present. Below 55 degrees C the coil proportion is negligible, and the B-Z exchange is slow. The disappearance of the coil gives rise at first to the B form and on lowering the temperature the Z proportion increases to the detriment of the B form. Proton linewidth, relaxation and polarisation transfer studies confirm the conclusion in the previous report on d(m5C-G-C-G-m5C-G) (Tran-Dinh et al Biochemistry 1984 in the press) that Z exchanges only with B whereas the latter also exchanges with S,Z in equilibrium B in equilibrium S. The present data show that even at high salt concentration where only the Z form of d(C-G-m5C-G-C-G) is observed the Z-S transition also passes through the B form as an intermediate stage. The B-Z transition takes place when the Watson-Crick hydrogen bonds are firmly maintained and is greatly favoured when there are three hydrogen bonds between the base-pairs.  相似文献   

13.
Poly[d(A-br5C).d(G-T)], a synthetic polynucleotide with a 50% A-T base composition, undergoes a reversible, highly co-operative transition between the right-handed B and left-handed Z conformations. The latter is stabilized at both elevated temperature and ionic strength. The B and Z-forms of poly[d(A-br5C).d(G-T)] coexist in 4.6 M-NaCl at 45 degrees C. Due to slow exchange, two sets of Tim and Gim resonances are observed and can be assigned to the B and Z conformations (the chemical shifts are, respectively, Tim = 13.4, 14.1 p.p.m. (parts/million); and Gim = 11.9, 12.4 p.p.m.). Measurements of the 1H spin-lattice (R1) and spin-spin (R2) relaxation rates of the exchangeable thymine (Tim) and guanine (Gim) imino protons have been used to probe the internal dynamics of the B and Z-forms of poly[d(A-br5C).d(G-T)] and the mechanism of the B-Z transition. The proton exchange behavior in the B and Z conformations is quite different. At elevated temperature, R1 for both Tim and Gim in the B conformation is dominated by exchange with the solvent, with Tim exchanging more rapidly than Gim. This demonstrates that exchange involves the opening of single base-pairs and that neighboring A-T and G-br5C base-pairs exchange independently of each other. B-form poly[d(A-br5C).d(G-T)] is unusual in that there is an acceleration of the Tim exchange rate with increasing NaCl concentration. Conversion to the Z-form by addition of 4.5 M-NaCl dramatically reduces both the Tim and Gim exchange rates (estimated to be less than 2 s-1 at 70 degrees C). Thus, the G-br5C base-pair and, in particular, the A-T base-pair are stabilized in the Z conformation. By measuring relaxation rates at 45 to 50 degrees C where the B and Z-forms are in equilibrium, we find that the B-Z interconversion rates are less than two per second. In the B conformation at 25 degrees C, the dipolar contributions to the imino proton relaxation rates are about one-third of those expected on the basis of a rigid rod model for 65 base-pair fragments, a difference we assign to large amplitude (30 degrees high frequency (less than 100 ns) out-of-plane motions of the bases. Conversion to the Z conformation has little effect on the dipolar contributions to relaxation, i.e. on the internal motions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
The decanucleotide sequence d(CCGGTACCGG) crystallizes as a four-way junction at low cobalt ion concentrations (i.e., 1 mM). When the cobalt concentration in the crystallization solution is increased to 5 mM, the sequence crystallizes as resolved B-DNA duplexes. Gel retardation studies of the decamer show both a faint slow-moving band and a much thicker fast-moving band at low cobalt ion concentrations, and only the intense fast-moving band at higher ion concentration. Circular dichroism (CD) spectroscopy of the decamer indicates a structural transition as the cobalt ion concentration in the solution is increased, probably from B-type to A-type DNA. These studies revealed that the oligomer sequence has several conformations and structures accessible to it, in a manner dependent on sequence, ion concentration, and DNA concentration.

[Supplementary materials are available for this article. Go to the publisher's online edition of Nucleosides, Nucleotides & Nucleic Acids for the following free supplemental resources(s): Supplementary Figures 1, 2, and 3.]  相似文献   

16.
Near UV CD spectra, UV absorption spectra and their first derivatives have been recorded on poly d(A-T).poly d(A-T) solutions in presence of high NaCl concentration and various amounts of NiCl2. Comparison of the results presented here with those obtained for poly d(G-C).poly d(G-C) and poly d(A-C).poly d(G-T) in comparable conditions, and the I.R. and Raman data on poly d(A-T).poly d(A-T), allows us to assign the new spectra to the Z conformation of poly d(A-T).poly d(A-T) in solution. The mechanism by which nickel ions induce the B----Z interconversion in the presence of high NaCl concentration is discussed.  相似文献   

17.
Hairpin formations of decamers d(CGCG-TA-CGCG), d(CGCG-TG-CGCG), and their m5dC analogs are evidenced by the existence of biphasic absorbance melting profiles in which the lower transition temperature increases with increasing oligomer concentration, whereas the higher melting temperature is concentration independent. The corresponding temperature dependent CD intensity at 285 nm exhibits a maximum around 55 degrees C. These observations are consistent with the interpretation that the lower temperature transition corresponds to the duplex to hairpin transformation while the melting of hairpins into single strands constitutes the higher temperature transition. The CD spectrum of the hairpin conformation appears to be characterized by a couplet with nearly equal positive and negative intensities at 285 and 255 nm, respectively, while a significantly smaller intensity at 285 nm is apparent for the duplex form. The hairpin conformation is suspected to contain a two-nucleotide loop. Titrations with NaCl further suggest that, in contrast to the TA sequence, the TG sequence with wobble base pairing favors Z formation under high salt conditions.  相似文献   

18.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

19.
Spectroscopic studies on solutions of poly(dG-m5dC) over a wide range of salt concentration are presented. Low salt solutions [( Na+]) less than 2 mM) of poly(dG-m5dC) produce circular dichroism (CD) spectra typical of the left-handed, Z form at high salt [( Na+] = 1.75 M). Solutions of poly(dG-m5dC) at intermediate salt concentrations, e.g., 142 mM, yield CD spectra characteristic of the right-handed, B conformation. 31p NMR spectra of the low salt form of poly(dG-m5dC) reveal two well separated peaks, split by 1.4 ppm, consistent with a dinucleotide repeat. Kinetic studies show that the transition from the low salt form to teh right-handed B form is slow, as expected for a major conformational change. These results suggest that the Z conformation in poly(dG-m5dC) can be stabilized at very low salt as well as at high salt.  相似文献   

20.
Abstract

The helical structures of d(C-G-m5C-G-C-G) were studied in aqueous solution at various salt concentrations and temperatures by CD and 1H-NMR spectroscopy. At room temperature only the B form is observed in 0.1 M NaCl whereas the B and Z forms are simultaneously present in 1.8 M NaCl. At high salt concentration (4 M NaCl) the Z form is largely predominant (> 95%). The Z form proton resonances were assigned by using the polarisation transfer method (between B and Z at 1.8 M NaCl) and by proton-proton decoupling (at high salt concentration).

The Z-B-Coil transitions were studied as a function of temperature with the 1.8 M NaCl solution. At high temperature (95°C) only the coil form (S) is present. Below 55°C the coil proportion is negligible, and the B-Z exchange is slow. The disappearance of the coil gives rise at first to the B form and on lowering the temperature the Z proportion increases to the detriment of the B form. Proton linewidth, relaxation and polarisation transfer studies confirm the conclusion in the previous report on d(m5C-G-C-G-m5C-G) (Tran-Dinh et al Biochemistry 1984 in the press) that Z exchanges only with B whereas the latter also exchanges with S,Z ? B ? S. The present data show that even at high salt concentration where only the Z form of d(C-G-m5C-G-C-G) is observed the Z-S transition also passes through the B form as an intermediate stage. The B-Z transition takes place when the Watson-Crick hydrogen bonds are firmly maintained and is greatly favoured when there are three hydrogen bonds between the base-pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号