首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis - the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.  相似文献   

2.
Total internal reflection fluorescence microscopy was used to monitor changes in individual granule motions related to the secretory response in chromaffin cells. Because the motions of granules are very small (tens of nanometers), instrumental noise in the quantitation of granule motion was taken into account. ATP and Ca2+, both of which prime secretion before fusion, also affect granule motion. Removal of ATP in permeabilized cells causes average granule motion to decrease. Nicotinic stimulation causes a calcium-dependent increase in average granule motion. This effect is more pronounced for granules that undergo exocytosis than for those that do not. Fusion is not preceded by a reduction in mobility. Granules sometimes move 100 nm or more up to and within a tenth of a second before fusion. Thus, the jittering motion of granules adjacent to the plasma membrane is regulated by factors that regulate secretion and may play a role in secretion. Motion continues until shortly before fusion, suggesting that interaction of granule and plasma membrane proteins is transient. Disruption of actin dynamics did not significantly alter granule motion.  相似文献   

3.
Exocytosis in secretory cells consists of release from intracellular storage granules directly into the extracellular space via fusion of the granule membrane with the plasma membrane of the cell. It is considered here as comprising two distinct processes. One is the close apposition of granule and plasma membranes. The other arises from interactions between the two membranes during the process of apposition, leading to the formation of a fusion pore. In the following it is shown for the case of the adrenal medullary chromaffin cell that the fusion pore can be ascribed to electroporation of the granule membrane, triggered by the strong electric field existing at the site of exocytosis. Based on an electric surface charge model of the cytoplasmic side of the plasma membrane, resulting from the negatively charged phosphatidylserine groups, it is found that the electrostatic field strength at the site of exocytosis reaches values on the order of 10(8) V/m at small intermembrane distances of 3 nm and lower. The field strength increases with the size of the disc-shaped plasma membrane region generating the electric field, reaching an approximate limit for a radius of 10 nm, at a surface charge density of 5.4 x 10(-2) C/m2. According to previous experimental evaluations of threshold field strength, this field is sufficiently strong to cause membrane electroporation. This step is a precondition for the subsequent membrane fusion during the ongoing process of apposition, leading to secretion.  相似文献   

4.
Local actin assembly is associated with sites of exocytosis in processes ranging from phagocytosis to compensatory endocytosis. Here, we examine whether the trigger for actin-coat assembly around exocytosing Xenopus egg cortical granules is 'compartment mixing'--the union of the contents of the plasma membrane with that of the secretory granule membrane. Consistent with this model, compartment mixing occurs on cortical granule-plasma membrane fusion and is required for actin assembly. Compartment mixing triggers actin assembly, at least in part, through diacylglycerol (DAG), which incorporates into the cortical granule membranes from the plasma membrane after cortical granule-plasma membrane fusion. DAG, in turn, directs long-term recruitment of protein kinase Cbeta (PKCbeta) to exocytosing cortical granules, where it is required for activation of Cdc42 localized on the cortical granules. The results demonstrate that mixing of two membrane compartments can direct local actin assembly and indicate that this process is harnessed during Xenopus egg cortical granule exocytosis to drive compensatory endocytosis.  相似文献   

5.
In secretory cells, calcium-regulated exocytosis is rapidly followed by compensatory endocytosis. Neuroendocrine cells secrete hormones and neuropeptides through various modes of exo-endocytosis, including kiss-and-run, cavicapture and full-collapse fusion. During kiss-and-run and cavicapture modes, the granule membrane is maintained in an omega shape, whereas it completely merges with the plasma membrane during full-collapse mode. As the composition of the granule membrane is very different from that of the plasma membrane, a precise sorting process of granular proteins must occur. However, the fate of secretory granule membrane after full fusion exocytosis remains uncertain. Here, we investigated the mechanisms governing endocytosis of collapsed granule membranes by following internalization of antibodies labeling the granule membrane protein, dopamine-β-hydroxylase (DBH) in cultured chromaffin cells. Using immunofluorescence and electron microscopy, we observed that after full collapse, DBH remains clustered on the plasma membrane with other specific granule markers and is subsequently internalized through vesicular structures composed mainly of granule components. Moreover, the incorporation of this recaptured granule membrane into an early endosomal compartment is dependent on clathrin and actin. Altogether, these results suggest that after full collapse exocytosis, a selective sorting of granule membrane components is facilitated by the physical preservation of the granule membrane entity on the plasma membrane.  相似文献   

6.
Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can be pretreated with 1 mM Ca before reconstitution without affecting the subsequent exocytosis of the reconstituted system in response to micromolar calcium concentrations. On reconstitution, aggregated cortical granules will fuse with one another in response to micromolar calcium provided that one of their number is in contact with the plasma membrane. If exocytosis involves the generation of lipid fusogens, then these results suggest that the calcium-stimulated production of a fusogen can occur only when contiguity exists between cortical granules and plasma membrane. They also suggest that a substance involved in exocytosis can diffuse and cause piggy-back fusion of secretory granules that are in contact with the plasma membrane. Our results are also consistent with a scheme in which calcium ions cause a reversible, allosteric activation of an exocytotic protein.  相似文献   

7.
Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated.  相似文献   

8.
Summary Freeze-fracture images of exocytosis and endocytosis were studied in various kinds of secretory cells of the anterior pituitary of mice and rabbits. Exocytotic figures are frequently observed in thin section of the anterior pituitary cells. In freeze-fracture images, small elevated membrane areas without membrane particles are often seen on the PF of the plasma membrane of the secretory cells. There is a secretory granule in the cytoplasm just beneath the particle-free membrane area, and limiting membrane of the granule is also devoid of the membrane particles at the part facing the plasma membrane. The fusion of membranes for exocytosis may occur at this particle-free area.The limiting membrane of the granule which is continuous with the plasma membrane is almost always coated after release of the granule core. This invagination of coated membrane may be an initiation site for the membrane retrieval after exocytosis. In freeze-fracture images, this depressed region with an accumulation of the membrane particles is observed on the PF of the plasma membrane. This particle-rich depressed region is thought to correspond to the coated area of the plasma membrane observed in thin section. It is thought that the membrane retrieval by pinocytosis initiates at the particle-rich depressed region of the plasma membrane.This study was supported by a grant from the Japan Ministry of Education  相似文献   

9.
《The Journal of cell biology》1989,109(6):2801-2808
The molecular details of the final step in the process of regulated exocytosis, the fusion of the membrane of the secretory granule with the plasma membrane, are at present obscure. As a first step in an investigation of this membrane fusion event, we have developed a cell- free assay for the interaction between pancreatic zymogen granules and plasma membranes. We show here that plasma membranes are able to trigger the release of the granule contents, and that this effect is specific to pancreatic membranes, involves membrane fusion, requires membrane proteins, and is stimulated by activators of G-proteins but not by Ca2+. The assay is simple, reliable, and rapid, and should permit the identification of proteins that are involved in the exocytotic fusion event.  相似文献   

10.
Secretory granules labeled with Vamp-green fluorescent protein (GFP) showed distinct signatures upon exocytosis when viewed by total internal reflection fluorescence microscopy. In approximately 90% of fusion events, we observed a large increase in fluorescence intensity coupled with a transition from a small punctate appearance to a larger, spreading cloud with free diffusion of the Vamp-GFP into the plasma membrane. Quantitation suggests that these events reflect the progression of an initially fused and spherical granule flattening into the plane of the plasma membrane as the Vamp-GFP simultaneously diffuses through the fusion junction. Approximately 10% of the events showed a transition from puncta to ring-like structures coupled with little or no spreading. The ring-like images correspond quantitatively to granules fusing and retaining concavity (recess of approximately 200 nm). A majority of fusion events involved granules that were present in the evanescent field for at least 12 s. However, approximately 20% of the events involved granules that were present in the evanescent field for no more than 0.3 s, indicating that the interaction of the granule with the plasma membrane that leads to exocytosis can occur within that time. In addition, approximately 10% of the exocytotic sites were much more likely to occur within a granule diameter of a previous event than can be accounted for by chance, suggestive of sequential (piggy-back) exocytosis that has been observed in other cells. Overall granule behavior before and during fusion is strikingly similar to exocytosis previously described in the constitutive secretory pathway.  相似文献   

11.
Secretory granules have been observed to swell during the process of exocytosis. Swelling is an indication of osmotic stress. The probable role of osmotic pressure in facilitating membrane fusion makes it necessary to determine whether granule membrane 'swelling' can occur prior to its fusion with the plasma membrane (pore formation) in the process of exocytosis. By subjecting adjacent thin and semi-thin sections of an activated granule to ultrastructural examination for membrane enlargement, and to metachromatic staining for verification of pore formation it is concluded that the perigranular membrane can indeed enlarge prior to pore formation. However, the degree of membrane enlargement can far exceed the limit of 2-3% stretching allowed under normal osmotic stress for a membrane bilayer. Such an extensive membrane enlargement, which takes place in the mechanism of exocytosis, cannot be achieved without being accompanied by the insertion of additional membrane.  相似文献   

12.
To study insulin exocytosis by monitoring the single insulin secretory granule motion, evanescent wave microscopy was used to quantitatively analyze the final stage of insulin exocytosis with biphasic release. Green fluorescent protein-tagged insulin transfected in MIN6 beta cells was packed in insulin secretory granules, which appeared to preferentially dock to the plasma membrane. Upon fusion evoked by secretagogues, evanescent wave microscopy revealed that fluorescence of green fluorescent protein-tagged insulin brightened, spread (within 300 ms), and then vanished. Under KCl stimulation, which represents the 1st phase of release, the successive fusion events were seen mostly from previously docked granules for the first minute, followed by the recruitment of new granules to the plasmalemmal docking sites. Stimulation with glucose, in contrast, caused the fusion events from previously docked granules for the first 120 s, thereafter a continuous fusion (2nd phase of release) was observed over 10 min mostly from newly recruited granules that progressively accumulated on the plasma membrane. Thus, our data revealed the distinct behavior of the insulin granule motion during the 1st and 2nd phase of release.  相似文献   

13.
S Scepek  M Lindau 《The EMBO journal》1993,12(5):1811-1817
We have investigated the granule fusion events during exocytosis in horse eosinophils by time-resolved patch-clamp capacitance measurements. Stimulation with intracellular GTP gamma S leads to a stepwise capacitance increase by 4.0 +/- 0.9 pF. At GTP gamma S concentrations < 20 microM the step size distribution is in agreement with the granule size distribution in resting cells. Above 80 microM the number of steps is reduced and very large steps occur. The total capacitance increase, however, is unaffected. These results show that at high GTP gamma S concentrations granule--granule fusion occurs inside the cell forming large compound granules, which then fuse with the plasma membrane (compound exocytosis). The electrical equivalent circuit of the cell during degranulation indicates the formation of a degranulation sac by cumulative fusion events. Fusion of the first granule with the plasma membrane induces fusion of further granules with this granule directing the release of all the granular material to the first fusion pore. The physiological function of eosinophils is the killing of parasites. Compound exocytosis and cumulative fusion enable the cells to focus the release of cytotoxic proteins to well defined target regions and prevent uncontrolled diffusion of this material, which would damage intact host cells.  相似文献   

14.
We have used thin section and freeze-fracture electron microscopy to study membrane changes occurring during exocytosis in rat peritoneal mast cells. By labeling degranulating mast cells with ferritin-conjugated lectins and anti-immunoglobulin antibodies, we demonstrate that these ligands do not bind to areas of plasma membrane or granule membrane which have fused with, or are interacting with, granule membrane. Moreover, intramembrane particles are also largely absent from both protoplasmic and external fracture faces of plasma and granule membranes in regions where these membranes appear to be interacting. Both the externally applied ligands and intramembrane particles are sometimes concentrated at the edges of fusion sites. The results indicate that membrane proteins are displaced laterally into adjacent membrane regions before the fusion process and that fusion occurs between protein-depleted lipid bilayers. The finding of protein-depleted blebs in regions of plasma and granule membrane interaction raises the interesting possibility that blebbing may be a process for exposing the granule contents to the extracellular space and for the elimination of excess lipid while conserving membrane proteins.  相似文献   

15.
The process of secretory granule-plasma membrane fusion can be studied in sea urchin eggs. Micromolar calcium concentrations are all that is required to bring about exocytosisin vitro. I discuss recent experiments with sea urchin eggs that concentrate on the biophysical aspects of granule-membrane fusion. The backbone of biological membranes is the lipid bilayer. Sea urchin egg membrane lipids have negatively charged head groups that give rise to an electrical potential at the bilayer-water interface. We have found that this surface potential can affect the calcium required for exocytosis. Effects on the surface potential may also explain why drugs like trifluoperazine and tetracaine inhibit exocytosis: they absorb to the bilayer and reduce the surface potential. The membrane lipids may also be crucial to the formation of the exocytotic pore through which the secretory granule contents are released. We have measured calcium-induced production of the lipid, diacylglycerol. This lipid can induce a phase transition that will promote fusion of apposed lipid bilayers. The process of exocytosis involves the secretory granule core as well as the lipids of the membrane. The osmotic properties of the granule contents lead to swelling of the granule during exocytosis. Swelling promotes the dispersal of the contents as they are extruded through the exocytotic pore. The movements of water and ions during exocytosis may also stabilize the transient fusion intermediate and consolidate the exocytotic pore as fusion occurs.  相似文献   

16.
Human neutrophil granule exocytosis mobilizes a complex set of secretory granules. This involves different combinations of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins to facilitate membrane fusion. The control mechanisms governing the late fusion steps are still poorly understood. Here, we have analyzed SNARE-interacting Sec1/Munc18 (SM) family members. We found that human neutrophils express Munc18-2 and Munc18-3 isoforms and that Munc18-2 interacts with the target-SNARE syntaxin 3. Munc18-2 was associated preferentially with primary granules but could also be found with secondary and tertiary granules, while Munc18-3 was majorily associated with secondary and tertiary granules. Ultrastructural analysis showed that both Munc18-2 and Munc18-3 were often located in close proximity to their respective SNARE-binding partners syntaxin 3 and syntaxin 4. Both isoforms were also found in plasma membrane fractions and in the cytosol, where they associate with cytoskeletal elements. Upon stimulation, Munc18-2 and Munc18-3 redistributed and became enriched on granules and in the plasma membrane. Munc18-2 primary granule exocytosis can be blocked by introduction of Munc18-2-specific antibodies indicating a crucial role in primary granule fusion. Our results suggest that Munc18-2 acts as a regulator of primary granule exocytosis, while Munc18-3 may preferentially regulate the fusion of secondary granules.  相似文献   

17.
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.  相似文献   

18.
To explore how the sulfonylurea receptor (SUR1) is involved in docking and fusion of insulin granules, dynamic motion of single insulin secretory granules near the plasma membrane was examined in SUR1 knock-out (Sur1KO) beta-cells by total internal reflection fluorescence microscopy. Sur1KO beta-cells exhibited a marked reduction in the number of fusion events from previously docked granules. However, the number of docked granules declined during stimulation as a consequence of the release of docked granules into the cytoplasm vs. fusion with the plasma membrane. Thus, the impaired docking and fusion results in decreased insulin exocytosis from Sur1KO beta-cells.  相似文献   

19.
Distinct mechanisms operate in different secreting systems, they are 1) free diffusion through the plasma membrane; 2) exocytosis resulting from fusion of a secretory granule with the plasma membrane; 3) fleeting release from a granule through a transient pore without full fusion; 4) release through a specialised plasmalemmal molecule such as the mediatophore. The latter mechanism is proposed to operate in rapid synapses in which the neurotransmitter is emitted as an abrupt chemical impulse of quantal composition. There, release is momentarily signalled in the plasma membrane by large intramembrane particles. Synaptic vesicles are also essential for regulation of this type of release. They fuse with the plasma membrane only late after activity and seem to be involved in calcium sequestration and extrusion.  相似文献   

20.
Loss of granule content during exocytosis requires the opening of a fusion pore between the secretory granule and plasma membrane. In a variety of secretory cells, this fusion pore has now been shown to subsequently close. However, it is still unclear how pore closure is physiologically regulated and contentious as to how closure relates to granule content loss. Here, we examine the behavior of the fusion pore during zymogen granule exocytosis in pancreatic acinar cells. By using entry of high-molecular-weight dyes from the extracellular solution into the granule lumen, we show that the fusion pore has a diameter of 29-55 nm. We further show that by 5 min after granule fusion, many granules have a closed fusion pore with evidence indicating that pore closure is a prelude to endocytosis and that in granules with a closed fusion pore the chymotrypsinogen content is low. Finally, we show that latrunculin B treatment promotes pore closure, suggesting F-actin affects pore dynamics. Together, our data do not support the classical view in acinar cells that exocytosis ends with granule collapse. Instead, for many granules the fusion pore closes, probably as a transition to endocytosis, and likely involving an F-actin-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号