首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila tracheal system forms by highly stereotyped migration of the tracheal cells, generating an elaborate network of interconnected tubes supplying oxygen to all tissues. A major guiding system in the migration process of all branches is the dynamic and localized expression of Branchless (Bnl), an FGF-like molecule. Bnl triggers the activation of the FGF receptor Breathless (Btl) locally in all tracheal cells. Is this the only guiding cue, or do additional local signals provide distinct inputs to each branch? Several recent papers identify such local signals, relying on contacts with specific cell types and with the matrix encountered by the migrating tracheal branches. In particular, the paper by Boube et al(1) demonstrates a role for PS integrins in promoting migration of a specific tracheal branch.  相似文献   

2.
3.
In the developing tracheal system of Drosophila melanogaster, six major branches arise by guided cell migration from a sac-like structure. The chemoattractant Branchless/FGF (Bnl) appears to guide cell migration and is essential for the formation of all tracheal branches, while Decapentaplegic (Dpp) signaling is strictly required for the formation of a subset of branches, the dorsal and ventral branches. Using in vivo confocal video microscopy, we find that the two signaling systems affect different cellular functions required for branching morphogenesis. Bnl/FGF signaling affects the formation of dynamic filopodia, possibly controlling cytoskeletal activity and motility as such, and Dpp controls cellular functions allowing branch morphogenesis and outgrowth.  相似文献   

4.
5.
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea.  相似文献   

6.
7.
Epithelial tubes that compose many organs are typically long lasting, except under specific developmental and physiological conditions when network remodeling occurs. Although there has been progress elucidating mechanisms of tube formation, little is known of the mechanisms that maintain tubes and destabilize them during network remodeling. Here, we describe Drosophila tendrils mutations that compromise maintenance of tracheal terminal branches, fine gauge tubes formed by tracheal terminal cells that ramify on and adhere tightly to tissues in order to supply them with oxygen. Homozygous tendrils terminal cell clones have fewer terminal branches than normal but individual branches contain multiple convoluted lumens. The phenotype arises late in development: terminal branches bud and form lumens normally early in development, but during larval life lumens become convoluted and mature branches degenerate. Their lumens, however, are retained in the remaining branches, resulting in the distinctive multi-lumen phenotype. Mapping and molecular studies demonstrate that tendrils is allelic to rhea, which encodes Drosophila talin, a large cytoskeletal protein that links integrins to the cytoskeleton. Terminal cells mutant for myospheroid, the major Drosophila beta-integrin, or doubly mutant for multiple edematous wings and inflated alpha-integrins, also show the tendrils phenotype, and localization of myospheroid beta-integrin protein is disrupted in tendrils mutant terminal cells. The results provide evidence that integrin-talin adhesion complexes are necessary to maintain tracheal terminal branches and luminal organization. Similar complexes may stabilize other tubular networks and may be targeted for inactivation during network remodeling events.  相似文献   

8.
9.
10.
The Drosophila tracheal system consists of a stereotyped network of epithelial tubes formed by several tracheal cell types. By the end of embryogenesis, when the general branching pattern is established, some specialised tracheal cells then mediate branch fusion while others extend fine terminal branches. Here evidence is presented that the Notch signalling pathway acts directly in the tracheal cells to distinguish individual fates within groups of equivalent cells. Notch helps to single out those tracheal cells that mediate branch fusion by blocking their neighbours from adopting the same fate. This function of Notch would require the restricted activation of the pathway in specific cells. In addition, and probably later, Notch also acts in the selection of those tracheal cells that extend the terminal branches. Both the localised expression and the mutant phenotypes of Delta, a known ligand for Notch, suggest that Delta may activate Notch to specify cell fates at the tips of the developing tracheal branches.  相似文献   

11.
Imam F  Sutherland D  Huang W  Krasnow MA 《Genetics》1999,152(1):307-318
Fibroblast growth factors (FGFs) bind to FGF receptors, transmembrane tyrosine kinases that activate mitogenic, motogenic, and differentiative responses in different tissues. While there has been substantial progress in elucidating the Ras-MAP kinase pathway that mediates the differentiative responses, the signal transduction pathways that lead to directed cell migrations are not well defined. Here we describe a Drosophila gene called stumps that is required for FGF-dependent migrations of tracheal and mesodermal cells. These migrations are controlled by different FGF ligands and receptors, and they occur by different cellular mechanisms: the tracheal migrations occur as part of an epithelium whereas the mesodermal migrations are fibroblast-like. In the stumps mutant, tracheal cells fail to move out from the epithelial sacs, and only rudimentary tracheal branches form. Mesodermal cells fail in their dorsal migrations after gastrulation. The stumps mutation does not block all FGF signaling effects in these tissues: both random cell migrations and Ras-MAP kinase-mediated induction of FGF-specific effector genes occurred upon ectopic expression of the ligand or upon expression of a constitutively activated Ras protein in the migrating cells. The results suggest that stumps function promotes FGF-directed cell migrations, either by potentiating the FGF signaling process or by coupling the signal to the cellular machinery required for directed cell movement.  相似文献   

12.
The Drosophila serum response factor (DSRF) is expressed in the precursors of the terminal tracheal cells and in the future intervein territories of the third instar wing imaginal disc. Dissection of the DSRF regulatory region reveals that a single enhancer element, which is under the control of the fibroblast growth factor (FGF)-receptor signalling pathway, is sufficient to induce DSRF expression in the terminal tracheal cells. In contrast, two separate enhancers direct expression in distinct intervein sectors of the wing imaginal disc. One element is active in the central intervein sector and is induced by the Hedgehog signalling pathway. The other element is under the control of Decapentaplegic and is active in two separate territories, which roughly correspond to the intervein sectors flanking the central sector. Hence, each of the three characterized enhancers constitutes a molecular link between a specific territory induced by a morphogen signal and the localized expression of a gene required for the final differentiation of this territory.  相似文献   

13.
14.
Insulin signaling in Drosophila has a significant role in regulating growth, metabolism, fecundity, stress response, and longevity. The molecular mechanism by which insulin signaling regulates these vital processes is dependent on the nutrient status and oxygen availability of the organism. In a genetic screen to identify novel genes that regulate Drosophila insulin signaling, we discovered lumens interrupted (lint), a gene that has previously been shown to act in tracheal development. The knockdown of lint gene expression using a Dilp2Gal4 driver which expresses in the neuronal insulin producing cells (IPCs), led to defects in systemic insulin signaling, metabolic status and growth. However, our analysis of lint knockdown phenotypes revealed that downregulation of lint in the trachea and not IPCs was responsible for the growth phenotypes, as the Gal4 driver is also expressed in the tracheal system. We found various tracheal terminal branch defects, including reduction in the length as well as number of branches in the lint knockdown background. Our study reveals that substantial effects of lint downregulation arose because of tracheal defects, which induced tissue hypoxia, altered systemic insulin/TOR signaling, and resulted in effects on developmental growth regulation.  相似文献   

15.
Oxygen delivery in many animals is enabled by the formation of unicellular capillary tubes that penetrate target tissues to facilitate gas exchange. We show that the tortuous outgrowth of tracheal unicellular branches towards their target tissues is controlled by complex local interactions with target cells. Slit, a phylogenetically conserved axonal guidance signal, is expressed in several tracheal targets and is required both for attraction and repulsion of tracheal branches. Robo and Robo2 are expressed in different branches, and are both necessary for the correct orientation of branch outgrowth. At the CNS midline, Slit functions as a repellent for tracheal branches and this function is mediated primarily by Robo. Robo2 is necessary for the tracheal response to the attractive Slit signal and its function is antagonized by Robo. We propose that the attractive and repulsive tracheal responses to Slit are mediated by different combinations of Robo and Robo2 receptors on the cell surface.  相似文献   

16.
Drosophila tracheal terminal branches are plastic and have the capacity to sprout out projections toward oxygen-starved areas, in a process analogous to mammalian angiogenesis. This response involves the upregulation of FGF/Branchless in hypoxic tissues, which binds its receptor Breathless on tracheal cells. Here, we show that extra sprouting depends on the Hypoxia-Inducible Factor (HIF)-alpha homolog Sima and on the HIF-prolyl hydroxylase Fatiga that operates as an oxygen sensor. In mild hypoxia, Sima accumulates in tracheal cells, where it induces breathless, and this induction is sufficient to provoke tracheal extra sprouting. In nontracheal cells, Sima contributes to branchless induction, whereas overexpression of Sima fails to attract terminal branch outgrowth, suggesting that HIF-independent components are also required for full induction of the ligand. We propose that the autonomous response to hypoxia that occurs in tracheal cells enhances tracheal sensitivity to increasing Branchless levels, and that this mechanism is a cardinal step in hypoxia-dependent tracheal sprouting.  相似文献   

17.
18.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

19.
We wanted to investigate the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the induction of cell migration. Using Drosophila tracheal and mesodermal cell migration as model systems, we find that the intracellular domain of the fibroblast growth factor receptors (FGFRs) Breathless (Btl) and Heartless (Htl) can be functionally replaced by the intracellular domains of Torso (Tor) and epidermal growth factor receptor (EGFR). These hybrid receptors can also rescue cell migration in the absence of Downstream of FGFR (Dof), a cytoplasmic protein essential for FGF signaling. These results demonstrate that tracheal and mesodermal cells respond during a specific time window to a receptor tyrosine kinase (RTK) signal with directed migration, independent of the presence or absence of Dof. We discuss our findings in the light of the recent findings that RTKs generate a generic signal that is interpreted in responding cells according to their developmental history.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号