首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new viscoelastic model was developed for the mathematical characterisation of mechanically induced and intrinsic contractional responses of the vascular smooth muscle. To this end, the elastic and viscous analogue elements were supplemented with a new active element generating stress proportional to its momentary elongation. The four-element model consisting of an active element, a parallel viscous element and both series and parallel elastic elements predicted biphasic or damped oscillatory stress relaxation and creep responses which were similar to that found experimentally earlier. Above a certain exciting frequency the model exhibited dissipative and below energy producing behaviour, as indicated by the sign change of the hysteresis loop area. In the case of sinusoidal modulation of the stress generation parameter the model showed parametric resonance, which was regarded as a simulation of intrinsic oscillation of the smooth muscle.  相似文献   

2.
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness–density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep–recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples (\(n = 19\)). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery’s nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep–recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening–softening behaviour with increasing stress.  相似文献   

3.
Creep contributes to the fatigue behavior of bovine trabecular bone.   总被引:3,自引:0,他引:3  
Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.  相似文献   

4.
The mechanical behaviour of the flexor tendon of the human hand is here investigated from the point of view of its nonlinear viscoelasticity. The samples are subjected to several single and multiple step loading histories. A quasilinear viscoelastic constitutive relationship between strain and stress history is assumed. Its characteristic material functions are determined with the aid of simple creep results, and model predictions are compared with the experimental results of complex loading histories. The validity of the quasilinear approach to tendon behaviour is discussed in connection with the deformation mechanism suggested by it.  相似文献   

5.
A new constitutive model for the biomechanical behaviour of smooth muscle tissue is proposed. The active muscle contraction is accomplished by the relative sliding between actin and myosin filaments, comprising contractile units in the smooth muscle cells. The orientation of the myosin filaments, and thereby the contractile units, are taken to exhibit a statistical dispersion around a preferred direction. The number of activated cross-bridges between the actin and myosin filaments governs the contractile force generated by the muscle and also the contraction speed. A strain-energy function is used to describe the mechanical behaviour of the smooth muscle tissue. Besides the active contractile apparatus, the mechanical model also incorporates a passive elastic part. The constitutive model was compared to histological and isometric tensile test results for smooth muscle tissue from swine carotid artery. In order to be able to predict the active stress at different muscle lengths, a filament dispersion significantly larger than the one observed experimentally was required. Furthermore, a comparison of the predicted active stress for a case of uniaxially oriented myosin filaments and a case of filaments with a dispersion based on the experimental histological data shows that the difference in generated stress is noticeable but limited. Thus, the results suggest that myosin filament dispersion alone cannot explain the increase in active muscle stress with increasing muscle stretch.  相似文献   

6.
This paper presents a constitutive model for predicting the nonlinear viscoelastic behavior of soft biological tissues and in particular of ligaments. The constitutive law is a generalization of the well-known quasi-linear viscoelastic theory (QLV) in which the elastic response of the tissue and the time-dependent properties are independently modeled and combined into a convolution time integral. The elastic behavior, based on the definition of anisotropic strain energy function, is extended to the time-dependent regime by means of a suitably developed time discretization scheme. The time-dependent constitutive law is based on the postulate that a constituent-based relaxation behavior may be defined through two different stress relaxation functions: one for the isotropic matrix and one for the reinforcing (collagen) fibers. The constitutive parameters of the viscoelastic model have been estimated by curve fitting the stress relaxation experiments conducted on medial collateral ligaments (MCLs) taken from the literature, whereas the predictive capability of the model was assessed by simulating experimental tests different from those used for the parameter estimation. In particular, creep tests at different maximum stresses have been successfully simulated. The proposed nonlinear viscoelastic model is able to predict the time-dependent response of ligaments described in experimental works (Bonifasi-Lista et al., 2005, J. Orthopaed. Res., 23, pp. 67-76; Hingorani et al., 2004, Ann. Biomed. Eng., 32, pp. 306-312; Provenzano et al., 2001, Ann. Biomed. Eng., 29, pp. 908-214; Weiss et al., 2002, J. Biomech., 35, pp. 943-950). In particular, the nonlinear viscoelastic response which implies different relaxation rates for different applied strains, as well as different creep rates for different applied stresses and direction-dependent relaxation behavior, can be described.  相似文献   

7.
In order to establish a quantitative model of blood flow in skeletal muscle, the mechanical properties of the blood vessels need to be measured. We present measurements of the viscoelastic properties of arterioles, venules, and capillaries in exteriorized rat spinotrapezius muscle. Muscles were perfused with an inert silicone polymer and a uniform static pressure was established by occlusion of the venous outflow. Vessel diameters were then measured as a function of the static pressure. This study provides the first measurements of the viscoelastic properties of microvessels in skeletal muscle in situ. Over a pressure range of 20-200 mmHg, the transverse arterioles are the most distensible vessels, while the arcade venules are the stiffest. In response to a step change in pressure, all vessels show an initial elastic deformation, followed by a nonlinear creep. Based on the experimental results for different pressure histories a constitutive equation relating vessel diameter to the local transmural pressure is proposed. Diameter changes are expressed in the form of a diameter strain, analogous to a Green's strain, and are related to the local transmural pressure using a standard linear solid model. This model has only three empirical coefficients and could be fitted to all experimental results for all vessels within error of measurement.  相似文献   

8.
This paper investigates the contribution of extracellular fluid flow to the apparent viscoelastic behavior of passive cardiac muscle. The muscle is modeled as an incompressible, isotropic, poroelastic solid saturated by an incompressible viscous fluid. Based on Biot's linear and nonlinear consolidation theories, solutions are presented for general time-dependent uniaxial loading of unconfined cylindrical muscle specimens. The nonlinear analysis includes the effects of large strain, material nonlinearity, and strain-dependent permeability. The computed results show that, for axial stretch ratios greater than 1.1, the changing permeability and the loading rate strongly affect the total stress relaxation and the short-time relaxation rate. Comparisons of theoretical and published experimental results show that extracellular fluid flow can account for several observed biomechanical features of passive myocardium, including the insensitivity of stress-strain curves to loading rate and of stress-relaxation curves to the amount of stretch. Theoretical hysteresis loops, however, are too small. Thus, both poroelastic and tissue viscoelastic effects must be considered in studies of passive cardiac muscle.  相似文献   

9.
Skeletal muscle relaxation behaviour in compression has been previously reported, but the anisotropic behaviour at higher loading rates remains poorly understood. In this paper, uniaxial unconfined cyclic compression tests were performed on fresh porcine muscle samples at various fibre orientations to determine muscle viscoelastic behaviour. Mean compression level of 25% was applied and cycles of 2% and 10% amplitude were performed at 0.2–80 Hz. Under cycles of low frequency and amplitude, linear viscoelastic cyclic relaxation was observed. Fibre/cross-fibre results were qualitatively similar, but the cross-fibre direction was stiffer (ratio of 1.2). In higher amplitude tests nonlinear viscoelastic behaviour with a frequency dependent increase in the stress cycles amplitude was found (factor of 4.1 from 0.2 to 80 Hz).The predictive capability of an anisotropic quasi-linear viscoelastic model previously fitted to stress-relaxation data from similar tissue samples was investigated. Good qualitative results were obtained for low amplitude cycles but differences were observed in the stress cycle amplitudes (errors of 7.5% and 31.8%, respectively, in the fibre/cross-fibre directions). At higher amplitudes significant qualitative and quantitative differences were evident. A nonlinear model formulation was therefore developed which provided a good fit and predictions to high amplitude low frequency cyclic tests performed in the fibre/cross-fibre directions. However, this model gave a poorer fit to high frequency cyclic tests and to relaxation tests. Neither model adequately predicts the stiffness increase observed at frequencies above 5 Hz.Together with data previously presented, the experimental data presented here provide a unique dataset for validation of future constitutive models for skeletal muscle in compression.  相似文献   

10.
The mechanical behavior of most biological soft tissue is nonlinear viscoelastic rather than elastic. Many of the models previously proposed for soft tissue involve ad hoc systems of springs and dashpots or require measurement of time-dependent constitutive coefficient functions. The model proposed here is a system of evolution differential equations, which are determined by the long-term behavior of the material as represented by an energy function of the type used for elasticity. The necessary empirical data is time independent and therefore easier to obtain. These evolution equations, which represent non-equilibrium, transient responses such as creep, stress relaxation, or variable loading, are derived from a maximum energy dissipation principle, which supplements the second law of thermodynamics. The evolution model can represent both creep and stress relaxation, depending on the choice of control variables, because of the assumption that a unique long-term manifold exists for both processes. It succeeds, with one set of material constants, in reproducing the loading-unloading hysteresis for soft tissue. The models are thermodynamically consistent so that, given data, they may be extended to the temperature-dependent behavior of biological tissue, such as the change in temperature during uniaxial loading. The Holzapfel et al. three-dimensional two-layer elastic model for healthy artery tissue is shown to generate evolution equations by this construction for biaxial loading of a flat specimen. A simplified version of the Shah-Humphrey model for the elastodynamical behavior of a saccular aneurysm is extended to viscoelastic behavior.  相似文献   

11.
In vivo mechanical properties of bulk tissue have not yet been explored sufficiently. One of the major problems researchers face is the lack of agreement between the constitutive models and the standardised methodologies for experimental studies. The object of this study was to obtain bulk modulus of the upper arm under relaxed and controlled contraction that was 25% of the maximum voluntary contraction. A new testing machine was designed to generate constant load on the upper arm and measure the deformation over time. This device is effectively a cuff that applies controllable pressure on a 47-mm wide band of the upper arm. Six different loads (10, 20, 30, 40, 50 and 60 kgf) were applied over a time of up to a maximum of 120 s. The deflection-time curves obtained show strongly non-linear responses of the bulk tissue. The non-linearity manifested by these deflection-time curves is in terms of both time- and load-dependency. A specific mechanical model was developed to represent the creep behaviour of the bulk tissue. The creep behaviour of the upper arm can be simulated by using four Voigt viscoelastic models in series. The three obvious soft tissues of the upper arm, namely skin, fat and muscle, were modelled in series. The effects of blood vessels and connective tissue were also modelled in series with the previous ones. A mechanical model would provide a more controlled method of studying the mechanical properties of the bulk tissue. The purpose of the current research, therefore, was to develop a mechanical model, which would predict the non-linear, viscoelastic behaviour of the human muscular bulk tissue.  相似文献   

12.
13.
Erk1/2活性在血管许多细胞功能中具有重要影响,而Notch3主要表达在动脉平滑肌细胞中,并且是发育过程中动脉成熟所必需的.为了探讨Notch3在血管平滑肌细胞中对Erk1/2信号通路的调控作用,采用siRNA基因敲除Notch3,γ-分泌酶抑制剂DAPT抑制Notch信号通路,质粒转染过表达Notch3活性区等方法,用Western印迹检测Notch3对血管平滑肌细胞中Erk1/2磷酸化水平,即Erk1/2活性的影响.同时,利用活性氧自由基(ROS)诱导激活Erk1/2;siRNA敲除Notch3表达致使血管平滑肌细胞中Erk1/2的磷酸化水平显著降低,并且抑制了ROS诱导的Erk1/2激活;同样,Notch通路抑制剂DAPT也抑制了ROS诱导的Erk1/2激活;而Notch3活性区NICD的过表达并没有改变血管平滑肌细胞中Erk1/2的磷酸化水平,但其延缓了ROS激活后Erk1/2活性的衰减.上述结果表明,Notch3可在血管平滑肌细胞中调控Erk1/2活性以及ROS诱导的Erk1/2信号激活.  相似文献   

14.
Novel applications in rehabilitation, surgery and tissue engineering require the knowledge of the mechanical behaviour of the tissues at microstructural level. The aim of this work is to investigate the viscoelastic properties of the tendon from the interaction of its biological constituents in the fibrillar network. Traction, relaxation and creep in-vitro tests have been performed on porcine flexor digital tendons. A viscoelastic constitutive equation at finite deformation is presented. The fibrillar deformation modes are described through a network of adaptive links between collagen type I and decorin. The theoretical predictions fit accurately the experimental data. The results of the model demonstrate the mechanical importance of glycosaminoglycan chains of decorin for the differential recruitment and the activation of fibrillar collagen.  相似文献   

15.
This paper demonstrates the feasibility of material identification and wall stress computation for human common carotid arteries based on non-invasive in vivo clinical data: dynamical intraluminal pressure measured by applanation tonometry, and medial diameter and intimal-medial thickness measured by high-resolution ultrasound echotracking. The mechanical behavior was quantified assuming an axially pre-stretched, thick-walled, cylindrical artery subjected to dynamical blood pressure and perivascular constraints. The wall was further assumed to be three-dimensional and to consist of a nonlinear, hyperelastic, anisotropic, incompressible material with smooth muscle activity and residual stresses. Mechanical contributions by individual constituents-an elastin-dominated matrix, collagen fibers, and vascular smooth muscle-were accounted for using a previously proposed microstructurally motivated constitutive relation. The in vivo boundary value problem was solved semi-analytically to compute the inner pressure during a mean cardiac cycle. Using a nonlinear least-squares method, optimal model parameters were determined by minimizing differences between computed and measured inner pressures over a mean cardiac cycle. The fit-to-data from two healthy patients was very good and the predicted radial, circumferential, and axial stretch and stress fields were sensible. Hence, the proposed approach was able to identify complex geometric and material parameters directly from non-invasive in vivo human data.  相似文献   

16.
17.
Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples (\(\textit{n}\,{=}\,13\)) at loads corresponding to physiological strain level of 2000 \({\upmu }{\upvarepsilon }\). We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships (\(r^2\,{=}\,0.73,\ p\,{<}\,0.001\)) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV.  相似文献   

18.
Skeletal muscles are responsible for the relative motion of the bones at the joints and provide the required strength. They exhibit highly nonlinear mechanical behaviour and are described by nonlinear hyperelastic constitutive relations. It is distinct from other biological soft tissue. Its hyperelastic or viscoelastic behaviour is modelled by using CE, SEE, and PEE. Contractile element simulates the behaviour of skeletal muscle when it is subjected to eccentric and concentric contraction. This research aims to estimate the stress induced in skeletal muscle in eccentric and concentric contraction with respect to the predefined strain. With the use of mathematical model for contraction of skeletal muscle for eccentric and concentric contraction, the stress induced in the skeletal muscle is estimated in this research. Mathematical model is developed for the muscle using EMG signals and Force-velocity relationship calculated. With the use of force-velocity of contraction of muscle, mathematical model is developed. This can be useful to understand the mechanical behaviour of skeletal muscles in eccentric and concentric contraction with clinical relevance. Authors are further working to develop the mathematical model with torsion force with proper activation function of muscle and experimentation for extraction of the anisotropic mechanical properties of skeletal muscle.  相似文献   

19.
This paper is concerned with characterizing the quasistatic mechanical behaviour of arterial tissue undergoing finite deformation through hyperelastic constitutive functions. Commonly the parameters of constitutive functions are established by a process of optimization based on experimental data. Instead we construct a finite element model of a representative volume element of the material and compute its homogenized response to a range of deformations. These data are then used to provide objective functions for optimizing the parameters of two analytical models from the literature.  相似文献   

20.
When studying in vivo arterial mechanical behaviour using constitutive models, smooth muscle cells (SMCs) should be considered, while they play an important role in regulating arterial vessel tone. Current constitutive models assume a strictly circumferential SMC orientation, without any dispersion. We hypothesised that SMC orientation would show considerable dispersion in three dimensions and that helical dispersion would be greater than transversal dispersion. To test these hypotheses, we developed a method to quantify the 3D orientation of arterial SMCs. Fluorescently labelled SMC nuclei of left and right carotid arteries of ten mice were imaged using two-photon laser scanning microscopy. Arteries were imaged at a range of luminal pressures. 3D image processing was used to identify individual nuclei and their orientations. SMCs showed to be arranged in two distinct layers. Orientations were quantified by fitting a Bingham distribution to the observed orientations. As hypothesised, orientation dispersion was much larger helically than transversally. With increasing luminal pressure, transversal dispersion decreased significantly, whereas helical dispersion remained unaltered. Additionally, SMC orientations showed a statistically significant (\(p < 0.05\)) mean right-handed helix angle in both left and right arteries and in both layers, which is a relevant finding from a developmental biology perspective. In conclusion, vascular SMC orientation (1) can be quantified in 3D; (2) shows considerable dispersion, predominantly in the helical direction; and (3) has a distinct right-handed helical component in both left and right carotid arteries. The obtained quantitative distribution data are instrumental for constitutive modelling of the artery wall and illustrate the merit of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号