首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The topography of the external surface of the Balb/c mouse erythrocyte has been investigated and compared to the human erythrocyte by using a series of protein radiolabeling probes. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the pattern of Coomassie Blue stained proteins was very similar for mouse and human erythrocyte ghosts, as was the distribution of radioactivity in protein bands after lactoperoxidase catalyzed radioiodination. The mouse erythrocyte glycoproteins identified by periodic-acid-Schiff and Stains-All reagents, sialic acid analysis of gel slices, binding of125I-wheat germ agglutinin and125I-concanavalin A to the gels, and glycoprotein radiolabeling techniques, differed markedly from the sets of proteins labeled by radioiodination, and also differed from the human erythrocyte glycoproteins. Instead of the PAS I to PAS IV series of sialoglycoproteins characteristic of human erythrocytes, the mouse erythrocyte possesses a broad band of sialoglycoproteins with several peaks ranging in mol wt from 65,000 to 32,000. The same group of sialoglycoproteins were labeled by the periodate/B3H4 technique specific for terminal sialic acid, and the galactose oxidase/B3H4 method (plus neuraminidase) specific for galactosyl/N-acetylgalactosaminyl residues penultimate to sialic acid. These results emphasize the necessity to employ a variety of protein radiolabeling probes based on different labeling specificities, to study the membrane topography of cells which are poorly understood compared to the human erythrocyte membrane.  相似文献   

2.
Summary HeLa cells, labeled with Na2 35SO4, release into the culture medium35SO4 bound to plasma membrane vesicles next to35SO4-glycoproteins and free35SO4. Plasma membrane vesicles, experimentally produced by treatment with formaldehyde, contain35SO4 and their surface can be stained with high iron diamine. Scanning of chromatograms of the trypsinate from labeled cells demonstrates radioactivity on the spot of heparan sulfate. It is concluded that HeLa cells synthesize heparan sulfate, which is incorporated at the plasma membrane and released by shedding of small vesicles.Supported by a grant from the Algemene Spaar- en Lijfrentekas Cancer Fund, Brussels, Belgium.  相似文献   

3.
Gangliosides in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups with galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components fractionated on diatrizoate to give four synaptosomal membrane fractions (A-D) and a mitochondrial pellet (E). Fractions A and B represent synaptosomal plasma membranes. When intact synaptosomes were labeled, the major portion of the total radioactivity incorporated into ganglioside fraction was found to be in G M1 3 species. With isolated membrane fractions little selectivity was seen: (1) more label was present compared to intact synaptosomes, and (2) zones corresponding to GM2, GM1, GD1a, GD1b were the major gangliosides labeled. The results confirm the conclusion that membrane fractions A and B are derived from the exposed synaptosome surface and also show that GM1 is the major ganglioside species available for enzyme oxidation at the surface.  相似文献   

4.
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9083-8) contains supplementary material, which is available to authorized users.  相似文献   

5.
Proteins of the chromaffin granule membrane were covalently labeled in situ with sulfhydryl-specific fluorophores. Using MIANS (maleimide iodoaminonaphthyl sulfonate) as the donor and fluorescein mercury acetate or fluorescein-5-maleimide as the acceptor, Förster fluorescence resonance energy transfer (FRET) could be employed to measure the degree of inter-membrane and intra-membrane protein-protein contact upon Ca2+-induced aggregation of the membranes. The four major findings were: (1) Raising the Ca2+ concentration to approx. 500 μM causes the proteins to aggregate in the plane of the membrane. This is demonstrated by Ca2+-induced increases in the fluorescence resonance energy transfer in double labeled membranes. This effect is not protein-concentration dependent and occurs at calcium concentrations too low for granule aggregation, implying intra-membrane protein clustering or patching. To our knowledge this is the first direct demonstration of the fluid mosaic nature of subcellular organelles. (2) If two sets of granules are labeled separately, Ca2+-induced aggregation brings at least 74% of the labeled proteins into close transmembrane proximity. This effect is also observed at 10–100-fold slower rates in the absence of calcium and can be greatly reduced by depleting the granule membrane of labeled peripheral proteins. It is enhanced if the granules are aggregated by Ca2+ or K+. We conclude that (some) peripheral proteins can transfer from one membrane surface to another. (3) Aggregation of separately labeled sets of membranes by Ca2+ also produces transmembrane energy transfer since: (a) the Km for Ca2+-induced quantum transfer is in the same range as the Km for aggregation; (b) the reaction is protein-concentration dependent; (c) reversal of aggregation also (partially) reverses donor quenching. (4) A kinetic analysis of the transmembrane effect shows it to be 5–10-fold slower than aggregation itself, supporting earlier suggestions (Haynes, D.H., Kolber, M. and Morris, S.J., (1979) J. Theor. Biol. 81, 713–743) that lipid and protein rearrangements are secondary to granule membrane aggregation.  相似文献   

6.
A new approach to the study of the molecular arrangements of proteins in membranes is described. Irradiation with visible light of native erythrocytes or washed erythrocyte membranes suspended in buffers containing a) riboflavin, fluorescein or fluorescein coupled to dextran and b) 3H-labelled tryptophan resulted in incorporation of radioactivity into the membrane proteins. Polyacrylamide gel electrophoresis of solubilized membranes followed by radioactivity measurements of the separated membrane proteins revealed that in native erythrocytes the protein components known to be located at the exterior cell surface, Band 3 and the major sialoglycoproteins became specifically labelled, whereas in washed lysed cells all of the major membrane proteins were labelled.  相似文献   

7.
We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i – 1) and 15NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13C and the second with 15N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B2R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.  相似文献   

8.
Low concentrations of sodium metaperiodate induce specific oxidative cleavage of sialic acids between carbon 7 and carbon 8 or carbon 8 and carbon 9. The aldehydes formed can easily be reduced with NaB3H4 to tritiated 5-acetamido-3,5-dideoxy-L-arabino-2-heptulosonic acid or 5-acetamido-3,5-dideoxy-L-arabino-2-octulosonic acid. At 0 degrees, the periodate anion penetrates the cell plasma membrane very slowly and only externally exposed sialic acids are oxidized. This was shown by (a) limited labeling of the sialoglycoproteins in a preparation of inside-out erythrocyte vesicles; (b) trapping 14C-labeled fetuin within resealed erythrocyte ghosts; fetuin was then poorly labeled, whereas the erythrocyte sialoglycoproteins were highly labeled; (c) comparison of labeled glycoproteins of mouse lymphoid cells before and after treatment with neuraminidase. This simple method of specifically introducing a radioactive label into cell surface sialic acids is useful in the study of cell surface sialic acid-containing glycoproteins.  相似文献   

9.
J. Voigt 《Planta》1985,164(3):379-389
A procedure has been developed to isolate and analyse the cell-wall glycoproteins of Chlamydomonas reinhardii. Under appropriate conditions, cell-wall glycoproteins can be quantitatively extracted from intact cells by aqueous LiCl. Although proteins and glycoproteins, which are presumably not related to the cell wall, are coextracted with the cell-wall subunits, these components can be readily identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as demonstrated by comparative analysis of LiCl-extracts from wild-type cells and the cell-wall-deficient mutant CW-15. Apart from the high-molecular-weight cell-wall components, two glycoproteins with apparent molecular weights (Mrs) of 36000 and 66000 were found to be present in LiCl-extracts of wild-type cells but absent in LiCl-extracts from the cell-wall-less mutant. Pulse-labeling experiments with [3H]proline and [35S]methionine revealed that the LiCl-extracts contained — in addition to the well-known cell-wall subunits — proteins of lower molecular weight, which are also preferentially labeled with [3H]proline. Protein components with Mrs of 68000, 44000, 36000, 26000 and 22000 were found to be more strongly labeled with [3H]proline than with [35S]methionine, whereas protein components with Mrs of 57000 and 52000 were more prominent after labeling with [35S]methionine. The portion of cell-wall subunits within the total amount of proteins extracted by LiCl was calculated to be at least 10% on the basis of the amount of hydroxyproline. Self-assembly of cell walls could be demonstrated after dialysis against water of a mixture of crude LiCl-extract and purified, insoluble, inner wall layers. Cell-wall glycoproteins could be enriched by gel exclusion chromatography of crude LiCl-extracts on Sepharose CL-4B columns equilibrated with 1 mol l-1 LiCl.Abbreviations EDTA ethylenediaminetetraacetic-acid - PAGE polyacrylamide gel electrophoresis - PAS periodic acid Schiff's reagent - SDS sodium dodecyl sulfate - TCA trichloroacetic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

10.
Explanted definitive primitive streak to four somite chick embryos were labeled with [H3]glucosamine or S35O4 and the glycosaminoglycans were isolated and characterized. On the basis of susceptibility to Streptomyces hyaluronidase, which specifically degrades hyaluronic acid, hyaluronic acid is the major glycosaminoglycan produced by these embryos (at least 84%). On the basis of electrophoretic mobility, about 10% of the [H3]glucosamine-labeled glycoaminoglycan is sulfated. At least 55% of the sulfate-labeled glycosaminoglycan is sensitive to testicular hyaluronidase, and 36–39% is resistant to testicular hyaluronidase, but sensitive to nitrous acid treatment. About 94% of the labeled glycosaminoglycans can be accounted for in ratios of 22:1:5:1 as hyaluronic acid:chondroitin sulfate:heparan sulfate. No stage-related changes were observed. It is suggested that hyaluronic acid synthesis at this time might be related to the appearance of extensive cell-free spaces.  相似文献   

11.
Fluorine-19 labeled compounds have been incorporated into lipids and proteins of Escherichia coli. 19F-Labeled membrane vesicles, prepared by growing a fatty acid auxotroph of a d-lactate dehydrogenase-deficient strain on 8,8-difluoromyristic acid, can be reconstituted for oxidase and transport activities by binding exogenous d-lactate dehydrogenase. 19F-Labeled d-lactate dehydrogenases prepared by addition of fluorotryptophans to a tryptophan-requiring strain are able to reconstitute d-lactate dehydrogenase-deficient membrane vesicles. Thus, lipid and protein can be labeled independently and used to investigate protein-lipid interactions in membranes.  相似文献   

12.
Developing oocytes of Xenopus laevis were isolated, pulsed for 10 minutes with either vitellogenin-3H, 32P or a mixture of l-leucine-3H and 32Pi, and subsequently incubated for various lengths of time in unlabeled medium. Homogenates were then prepared and centrifuged on 20–60% sucrose gradients.Vitellogenin-3H, 32P was found to associate initially with membranous material, but within 45 min more than half the label was associated with the yolk platelets. Since it takes at least 60–120 min for vitellogenin to be converted into lipovitellin and phosvitin, this transformation must occur within the platelets rather than at the oocyte surface or within pinosomes.Eighteen hours after a pulse with l-leucine-3H and 32Pi, neither the yolk nor the mitochondria fraction became significantly labeled; this indicates that the macromolecular components of these structures are not synthesized or phosphorylated by the oocyte to any great extent during vitellogenesis. Instead, various components within the membranous and “soluble” regions became labeled.  相似文献   

13.
A method for modifying and isotopic labeling the sialyl moiety of sialoglycoproteins is described. The basis of the procedure is the reductive amination of the exocyclic aldehyde group, generated on sialic acid by mild periodate oxidation, with a variety of amino compounds and sodium cyanoborohydride. Optimal conditions were selected to obtain maximum modification of sialic acid and minimal non-specific incorporation of the amino compound (glycine). The glycine modified model glycoproteins (α1-acid glycoprotein, fetuin) yielded single homogenous peaks upon gel filtration and on ion exchange chromatography. On gel electrophoresis a major band accounting for 92–98% of the modified glycoprotein and two minor bands consisting of dimers and trimers of the glycoprotein were observed. The modification did not alter the ability of the sialoglycoproteins to bind to wheat germ agglutinin-Sepharose or to interact with antibodies. The modified sialic acid was only partially released by mild acid hydrolysis suggesting that the introduction of an amino compound into the polyol chain of sialic acid has a stabilizing effect on the ketosidic linkage of the sugar. Interestingly, the modification rendered the sialic acid resistant to a variety of sialidases. The potential uses of this modification procedure include 1) the introduction of different isotopic labels (3H,14C,35S,125I) into the sialic acid moiety of glycoproteins; 2) the preparations of biologically active sialoglycoprotein (hormones, enzymes, co-factors) with increased circulating half-lives in animals; 3) preparation of substrates to search for endoglycosidases; 4) the direct comparison of sialoglycoprotein patterns obtained in small amounts from normal and pathological cells or tissues, and 5) the isolation and purification of cell surface sialoglycoproteins.  相似文献   

14.
Partially purified plasma membranes of rat mammary gland, obtained as light (F1) and heavy (F2) fractions by flotation on a discontinuous sucrose density gradient, were further fractionated by density perturbation flotation using digitonin to shift the density of the cholesterol-rich portion of the membranes. The shifted fraction (F1F3) of digitonin-treated F1 was highly enriched in 5′-nucleotidase, cholesterol and sialic acid, but free of galactosyltransferase, suggesting that it contained highly purified plasma membranes. The unshifted fraction (F1DF1) was enriched in galactosyltransferase and depleted in nucleotidase, cholesterol and sialic acid, suggesting that it contained Golgi fragments. The F2 fraction shows substantially different behavior. Part of it re-equilibrates to the F1 position upon reflotation. When treated with digitonin, part of F2 is shifted to a higher density (F2DF3). F2DF3 is enriched in 5′-nucleotidase, cholesterol, sialic acid and galactosyltransferase. These properties suggest that this subfraction comes from a plasma membrane containing galactosyltransferase.The sialoglycoproteins of the various fractions were compared with those of rat milk fat globule membrane, which is derived in part from the apical surface of the mammary secretory cell. Dodecyl sulfate (SDS) polyacrylamide gel electrophoresis reveals two major glycoprotein bands (GP-II and GP-III) in F1DF3. F2DF3 contains these and an additional band of lower mobility (GP-I). Both crude and purified MFGM contain all three bands. Comparisons of peanut lectin receptors by autoradiography of polyacrylamide gels run in SDS and then treated with [125I]peanut lectin also suggest that F2DF3 is more similar to the milk fat globule membrane than is F1DF3. However, analysis of the membrane polypeptides and concanavalin A (ConA) receptors shows no obvious relationship between milk fat globule membrane and any of the isolated mammary membrane fractions. These results indicate that the relationship between the milk fat globule membrane and mammary membranes is complex, possibly involving components not associated with the mammary plasma membrane or only selected components of the plasma membrane.  相似文献   

15.
The microvillous membrane of human placenta is in direct contact with maternal blood and thus plays a vital role in many essential functions of the placenta. As an initial step in understanding the membrane proteins, and their relationship to these functions and to the structure of the membrane, we have investigated an isolated membrane preparation. Ten major peptide bands and an approximately equal number of minor bands were seen with sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Sialoglycoproteins were labeled with periodate (PA-3H) borohydride and external surface components with lactoperoxidase-[125I] (LP-125I). One principal (69 000 mol. wt) and several minor (100 000, 45 000, and 38–40 000 mol. wt) bands were labeled as Sialoglycoproteins and found to be exposed on the surface of the membrane. Approx. 50% of the membrane protein and all of the sialic acid was tightly bound to membrane lipid and resistant to extraction with dimethyl maleic anhydride (DMMA). Electron microscopy demonstrated extraction by DMMA of microfilaments presumptively identified as actin and other electron dense components from the villous core. The extracted supernate and the residual pellet differed markedly in protein composition. The supernatant contained bands of 180 000, 115 000, 85 000, 70–72 000, 45 000, and 38–40 000 mol. wt whereas the lipid pellet contained components of 200 000, 150 000, 100 000, 69 000, and 64 000 mol. wt. The lipid matrix with which these proteins were associated contained phosphatidyl choline and sphingomyelin and was similar in composition to other plasma membranes. Thus by using a variety of experimental approaches the proteins of the human placental microvillous membrane can be divided into groups based on their sialic acid content, exposure on the external surface, tightness of binding to the membrane lipid, and relation to membrane structure.  相似文献   

16.
The sialoglycoprotein subunits of human placental brush border membranes were labeled by sequential treatment with periodate and (3H)-sodium borohydride, which trititates sialic acid, and by lactoperoxidase-catalyzed (125I) iodination of tyrosine residues. The labeled subunits were characterized with respect to their affinity for antisera raised against Triton X-100 extracts of placental brush border membranes. The immunochemically reactive components were analyzed by two-dimensional electrophoresis according to a modification of the O'Farrell technique [20] enabling the assignment of estimated Mr? and pI. Of the 33 3H-labeled brush border subunits present in Triton X-100-solubilized membrane preparations, 18 subunits reacted with antiplacental brush border antisera insolubilized on CNBr-activated Sepharose or in immunoprecipitates. Fourteen of these tritiated subunits were also labeled with 125I, confirming that these are glycoproteins. The plasma membranes of normal human liver and microsomes from kidney were examined for the placental brush border glycoprotein subunits by reaction with insolubilized antiplacental brush border antisera and two-dimensional electrophoresis of the reacting tritium-labeled subunits. Comparison of the two-dimensional electrophoretic maps of the immunochemically reacting glycoproteins from liver, kidney, and placenta resulted in the identification of seven placental subunits in common with liver and kidney on the basis of antigenic cross-reactivity, Mr?, and pI. Four placental glycoproteins were not found in the other tissues and are potentially specific to the placenta. Three of the placental subunits were only seen in placenta and kidney. Three of the subunits ran at the dye front and could not be assigned molecular weights. One of the subunits was poorly labeled by tritiation of sialic acid and was not considered.  相似文献   

17.
An adaptation of the sodium periodate/sodium borotritide procedure for the identification of membrane sialoglycoproteins is described which eliminates interference from nonspecifically incorporated tritium. Synaptic membranes were labeled using the NaIO4NaB3H4 procedure and separated by polyacrylamide gel electrophoresis. Following electrophoresis the gels were fixed, sliced, and individual slices treated with neuraminidase. Treatment with neuraminidase selectively released [3H]sialyl derivatives from the fixed glycoproteins allowing the unambiguous identification of sialoglycoproteins. The sialoglycoprotein composition of synaptic membranes and synaptic junctions was compared.  相似文献   

18.
Membrane transport carrier function, its regulation and coupling to metabolism, can be selectively investigated dissociated from metabolism and in the presence of a defined electrochemical ion gradient driving force, using the single internal compartment system provided by vesiculated surface membranes. Vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated transport of several neutral amino acids into an osmotically-sensitive intravesicular space without detectable metabolic conversion of substrate. When a Na+ gradient, external Na+ > internal Na+, was artifically imposed across vesicle membranes, accumulation of several neutral amino acids achieved apparent intravesicular concentrations 6- to 9-fold above their external concentrations. Na+-stimulated alanine transport activity accompanied plasma membrane material during subcellular fractionation procedures. Competitive interactions among several neutral amino acids for Na+-stimulated transport into vesicles and inactivation studies indicated that at least 3 separate transport systems with specificity properties previously defined for neutral amino acid transport in Ehrlich ascites cells were functional in vesicles from mouse fibroblasts: the A system, the L system and a glycine transport system. The pH profiles and apparent Km values for alanine and 2-aminoisobutyric acid transport into vesicles were those expected of components of the corresponding cellular uptake system. Several observations indicated that both a Na+ chemical concentration gradient and an electrical membrane potential contribute to the total driving force for active amino acid transport via the A system and the glycine system. Both the initial rate and quasi-steady-state of accumulation were stimulated as a function of increasing concentrations of Na+ applied as a gradient (external > internal) across the membrane. This stimulation was independent of endogenous Na+, K+-ATPase activity in vesicles and was diminished by monensin or by preincubation of vesicles with Na+. The apparent Km for transport of alanine and 2-aminoisobutyric acid was decreased as a function of Na+ concentration. Similarly, in the presence of a standard initial Na+ gradient, quasi-steady-state alanine accumulation in vesicles increased as a function of increasing magnitudes of interior-negative membrane potential imposed across the membrane by means of K+ diffusion potentials (internal > external) in the presence of valinomycin; the magnitude of this electrical component was estimated by the apparent distributions of the freely permeant lipophilic cation triphenylme thylphosphonium ion. Alanine transport stimulation by charge asymmetry required Na+ and was blocked by the further addition of either nigericin or external K+. As a corollary, Na+-stimulated alanine transport was associated with an apparent depolarization, detectable as an increased labeled thiocyanate accumulation. Permeant anions stimulated Na+-coupled active transport of these amino acids but did not affect Na+-independent transport. Translocation of K+, H+, or anions did not appear to be directly involved in this transport mechanism. These characteristics support an electrogenic mechanism in which amino acid translocation is coupled t o an electrochemical Na+ gradient by formation of a positively charged complex, stoichiometry unspecified, of Na+, amino acid, and membrane component. Functional changes expressed in isolated membranes were observed t o accompany a change in cellular proliferative state or viral transformation. Vesicles from Simian virus 40-transformed cells exhibited an increased Vmax of Na+-stimulated 2-aminoisobutyric acid transport, as well as an increased capacity for steady-state accumulation of amino acids in response t o a standard Na+ gradient, relative t o vesicles from nontransformed cells. Density-inhibition of nontransformed cells was associated with a marked decrease in these parameters assayed in vesicles. Several possibilities for regulatory interactions involving gradient-coupled transport systems are discussed.  相似文献   

19.
Amidination of the outer and inner surfaces of the human erythrocyte membrane   总被引:12,自引:0,他引:12  
We have synthesized a novel imidoester, isethionyl acetimidate, which is unable to penetrate the membrane of the human erythrocyte. It has the same specificity for amino groups as ethyl acetimidate, which penetrates the membrane. Either reagent can be labeled with 3H or 14C and, thus, be used to convert amines to radioactive amidines. An erythrocyte membrane saturated with either compound functions nearly normally. Therefore, the membrane can be double labeled if the amino groups on the outer surface of a cell are saturated with isethionyl acetimidate (e.g. labeled with 14C) and the remaining active sites are saturated with ethyl acetimidate (labeled with 3H). Alternatively, the membrane can be isolated after saturation with [14C]isethionyl acetimidate and treated with [3H]isethionyl acetimidate. From quantitative experiments of this kind we conclude that there are more than ten times as many reactive amino groups in protein on the inner surface than on the outer surface of the membrane. Nearly all of the reactive amino groups in lipid are on the inner surface. The localization of individual polypeptides confirms and extends assignments made previously by other techniques; as many as four major components may span the membrane. The proteins and lipids react to the same extent with ethyl acetimidate in the intact cell as they do in isolated membranes; this implies that the isolation does not load to major structural rearrangements.  相似文献   

20.
Renal glomerular basement membrane was labeled in vivo by the injection of tracer amounts of radioactive sulfate into normal adult rats. The biosynthesis and turnover of [35S]glycosaminoglycans in purified basement membrane was determined from the specific activity of 35S in pronase digests of basement membranes isolated 1–7 days after injection. Peak radioactive labeling occurred 24 h after injection following which the specific activity of basement membrane sulfate, expressed as cpm/μg uronic acid, progressively declined over the ensuing period of study. The biologic half-life of radioactive sulfate in basement membrane was estimated at about 7 days, which is within the range previously reported for [35S]glycosaminoglycans in whole renal cortex. The findings indicate that 35S-labeled components of glomerular basement membrane have a relatively rapid turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号