首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Digitonin-solubilized turkey erythrocyte beta-adrenergic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack beta receptors. Incorporation of turkey beta receptors into acceptor membranes was directly proportional to the quantity of soluble protein added to the reconstitution system. Reconstituted beta receptors demonstrate saturable [125I]iodohydroxybenzylpindolol binding (Bmax = 11.1 +/- 0.8 fmol/mg, K = 77.8 +/- 8.6 pM) and stereospecificity ((-)-propranolol, K = 11.0 nM; (+)-propranolol, K = 2000 nM; (-)-isoproterenol, K = 250 nM; (+)-isoproterenol, K = 82 micro M). Reconstituted beta receptors appear to be incorporated into acceptor membranes as integral proteins. Reconstituted beta receptors cannot be extracted by high salt or pH (3 to 11); detergent is required for resolubilization of reconstituted beta receptors. Adenylate cyclase stimulation was not obtained in reconstituted membranes since acceptor membranes lack a catalytic subunit. However, guanine nucleotide regulation of agonist affinity was observed indicating a functional reconstitution. GTP (100 micro M) produces a 5-fold decrease in the affinity of isoproterenol for reconstituted beta receptors. Experiments with sulfhydryl reagents indicate that the reconstituted beta receptor couples with the guanine nucleotide regulatory protein of the acceptor membranes. These data describe the successful reconstitution of a beta receptor and indicate that the reconstituted beta receptor can interact with the GTP binding protein of human erythrocyte acceptor membranes.  相似文献   

2.
The development of cholinergic synapses in the rat olfactory bulb was investigated by measuring changes in the activity of choline acetyltransferase (ChAT; EC 2.3.1.6.), a presynaptic cholinergic marker, and in the concentration of muscarinic receptors, components of cholinoceptive membranes. Three biochemical properties of the muscarinic system also were examined for possible differentiation: ligand binding, molecular weight, and isoelectric point. Receptors from embryonic (day 18), neonatal (postnatal day 3), and adult rat olfactory bulbs exhibited identical complex binding (nH = 0.45) of the agonist carbachol. For each age, the relative proportions of high-affinity (Ki approximately equal to 1.0 microM) and low-affinity (Ki approximately equal to 100 microM) binding states were 60% and 40%, respectively. The antagonist pirenzepine also bound to high-affinity (Ki approximately equal to 0.15 microM, RH approximately equal to 70%) and low-affinity (Ki approximately equal to 2.0 microM, RL approximately equal to 30%) sites in neonatal and adult rats. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis of [3H]propylbenzilylcholine mustard-labeled receptors from neonatal and adult rats showed a single electrophoretic form with an apparent molecular weight of 65,000. In contrast, analytical isoelectric focusing indicated high pI (4.50) and low pI (4.00) receptor forms were present. Neonatal rats contained approximately equal proportions of the two receptor forms, whereas adult rats contained mainly the low pI form, indicating that molecular alteration of the receptor population had occurred during development. Comparison of postnatal changes in acetylcholine receptors and ChAT activity showed a striking correlation between the development of cholinergic terminals and muscarinic receptors. Throughout the first postnatal week, ChAT activity remained at 5% of adult levels; activity began to rise on postnatal day 6 and gradually reached adult levels (56 +/- 4 mumol of [3H]acetylcholine/h/g) during the fourth week. Similarly, muscarinic receptor concentration was low (30-50 fmol/mg) throughout the first week, began to rise at postnatal day 7; and reached 90% of adult levels (317 +/- 17 fmol/mg) by the fourth week. In contrast, there was little increase in the concentration of nicotinic acetylcholine receptors (30 fmol/mg) during this period. The parallel postnatal development of ChAT activity and muscarinic receptors suggests the existence of factors that couple the differentiation of presynaptic cholinergic terminals and postsynaptic cholinoceptive elements.  相似文献   

3.
Inhibitory coupling of receptors to adenylate cyclase previously has been shown to be relatively sensitive to inactivation by alkylation with N-ethylmaleimide (NEM). Modification of the inhibitory guanine nucleotide regulatory protein, Ni, has been proposed to be responsible for this effect. The effects of NEM on GTP-sensitive binding of carbachol to muscarinic cholinergic receptors has been compared in a cell line (1321N1 human astrocytoma cells) in which these receptors stimulate phosphoinositide breakdown and in a cell line (NG108-15 neuroblastoma X glioma cells) in which activation of these receptors results in inhibition of adenylate cyclase. Pretreatment of membrane preparations from 1321N1 cells with NEM resulted in a concentration-dependent decrease in the extent of pertussis toxin-catalysed [32P]ADP-ribosylation of a 41 000 Da protein previously proposed to be the alpha subunit of Ni. Under conditions where 32P-labelling of Ni in 1321N1 membranes was reduced by NEM by 90%, no effect was observed on the extent of guanine nucleotide-sensitive high-affinity binding of carbachol to muscarinic cholinergic receptors. In contrast, treatment of NG108-15 membranes with NEM under the same conditions resulted in complete loss of high-affinity guanine nucleotide sensitive binding of carbachol. These results illustrate another difference between the muscarinic receptor population of these two cell lines, and support the previous proposal that muscarinic receptors of 1321N1 cells couple to a guanine nucleotide regulatory protein that is not Ni.  相似文献   

4.
Beta-adrenergic receptors were characterized by measuring the specific binding of 3H-dihydroalprenolol (DHA) on intact isolated rat peritoneal mast cells (RPMC) and on perigranular membranes derived from purified RPMC granules. The specific binding of 3H-DHA reaches an equilibrium within 30 min at 5 degrees C and is linear with cell number. Scatchard analysis reveals two populations of binding sites on intact cells: with KD = 10.6 +/- 2.6 and 129 +/- 4.7 nM and Bmax of 186 +/- 38 and 1200 +/- 415 fmol/10(6) cells, respectively. Each cell contains 120 X 10(3) high-affinity binding sites and 720 X 10(3) low-affinity binding sites. There appears to be neither alpha-adrenergic nor muscarinic cholinergic receptors on the RPMC. Specific binding of 3H-DHA also occurred to isolated granules with perigranular membranes. The binding was saturable with a single population of binding sites with an affinity (KD) of 7.0 +/- 0.45 nM. Maximum binding (Bmax) was calculated at 56.6 +/- 1.9 fmol/10(9) granules. Subfractionation of granule components demonstrated that the specific binding sites appear to be localized exclusively on the perigranular membrane.  相似文献   

5.
Acceptor sites for the oestrogen receptor in hen oviduct chromatin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Partially purified hen oviduct oestrogen receptors, charged with [3H]oestradiol, were shown to specifically bind in vitro to purified hen oviduct chromatin. Maximal binding occurred within 60min at 0 degrees C in a Tris buffer containing 0.1 M-KCl and 0.5 mM-phenylmethanesulphonyl fluoride. The binding of the [3H]oestradiol-receptor complexes to intact purified chromatin was saturable, whereas the receptor binding to hen DNA remained linear. Saturation was further demonstrated by the minimal acceptor binding of receptor charged with [3H]oestradiol plus 200-fold oestradiol compared with [3H]oestradiol receptors at equal [3H]oestradiol concentrations. Scatchard analysis of [3H]oestradiol-receptor binding to chromatin above DNA levels gave indications of high-affinity binding with a low capacity. Further, the nuclear binding was tissue-specific since the binding to hen spleen chromatin was negligible. To further uncover the specific acceptor sites, proteins were removed from hen oviduct chromatin by increasing concentrations of guanidine hydrochloride (1-7M). Those residual fractions extracted with 3-7 M-guanidine hydrochloride had the highest acceptor activity (above DNA levels) with the peak activity uncovered by 5 M-guanidine hydrochloride. To further characterize the oestrogen-receptor acceptor sites, oviduct chromatin was bound to hydroxyapatite in the presence of 3 M-NaCl and then protein fractions were extracted sequentially with 1-7 M-guanidine hydrochloride. Each fraction was then reconstituted to pure hen DNA by reverse gradient dialysis. [3H]Oestradiol receptors were found to bind to the greatest degree to the fraction reconstituted from the 5 M-guanidine hydrochloride protein extract. Reconstituted nucleoacidic proteins (NAP) from combined 4-7 M-guanidine hydrochloride protein extracts showed saturable binding by [3H]-oestradiol receptors, whereas binding to hen DNA did not saturate. The high affinity, low capacity, and specificity of binding of oestrogen receptors to NAP was similar to that found in intact chromatin. Thus, chromatin acceptor proteins for the oestrogen receptor have been partially isolated and characterized in the hen oviduct and display properties similar to that reported for the acceptor proteins of the progesterone receptor.  相似文献   

6.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

7.
Immobilized catecholamines have played an important role in the localization of alpha- and beta-adrenergic receptors to the plasma membrane of effector cells, and in elucidating mechanisms of beta receptor activation of cardiac muscle. An extension of immobilized drug and affinity chromatography procedures has been developed by utilizing receptor-specific monoclonal antibodies. Structurally different beta 1- and beta 2-adrenergic receptors have been purified with a single monoclonal antibody affinity column, where the antibody is specific for an epitope in the ligand-binding site of both beta 1 and beta 2 receptors. Specificity was increased by elution of receptors from the monoclonal antibody affinity columns with low concentrations of beta-receptor antagonists. These studies indicate that the turkey erythrocyte beta 1-adrenergic receptor is most likely a monomer with a molecular weight of 65,000-70,000. beta 2-Adrenergic receptors have a primary subunit of 55,000-58,000 daltons, with the intact receptor in membranes having a molecular weight of 109,000, which suggests that the beta 2-adrenergic receptor is most likely a dimer of either two identical subunits or a binding subunit and an unidentified second subunit.  相似文献   

8.
The phosphorylation of cardiac membrane proteins has been studied in preparations of newborn chick hearts. Membranes were isolated from 32P-loaded tissue after treatment with or without the beta-adrenergic receptor agonist isoproterenol and/or the muscarinic cholinergic receptor agonist oxotremorine. The phosphorylation of a low molecular weight membrane protein was enhanced by isoproterenol as early as 10 s after adding the drug. This phosphoprotein had a molecular weight of approximately 26,000 or 14,000 depending on the conditions used to solubilize the membranes prior to electrophoresis. It is most probably phospholamban/calciductin. The apparent molecular weight of the protein observed at 26,000 increased by approximately 1,000 as phosphorylation increased. The phosphorylation of this protein was abolished by short term treatment of the isoproterenol-treated tissue with the muscarinic receptor agonist oxotremorine. Effects of oxotremorine were observed within 30 s and were maximal between 2-5 min. The oxotremorine-induced decrease in phosphorylation was accompanied by a decrease in molecular weight. This phosphoprotein was found in a membrane fraction enriched in cardiac sarcolemma as well as in another containing sarcolemma and sarcoplasmic reticulum. The phosphorylation of this membrane component may play a role in the effects of beta-adrenergic and muscarinic cholinergic agonists on cardiac contractile force.  相似文献   

9.
Purified porcine atrial muscarinic receptor (mAcChR) was reconstituted with purified porcine atrial inhibitory guanine nucleotide binding protein (Gi) in a lipid mixture consisting of phosphatidylcholine, phosphatidylserine, and cholesterol (1:1:0.1 w/w). 5'-Guanylyl imidodiphosphate (0.1 mM) had no effect on the binding of the muscarinic antagonist L-quinuclidinyl benzilate but converted high-affinity carbachol binding sites (Kd equal to 1 microM) in the reconstituted preparation to the low-affinity state (Kd equal to about 100 microM). Steady-state kinetic measurements of GTPase activity showed that the turnover number was increased from 0.19 min-1 in the presence of the muscarinic antagonist L-hyoscyamine to 2.11 min-1 for the agonist carbachol. The affinity of Gi for GDP was reduced by about 50-fold upon interaction with the carbachol-mAcChR complex, and the observed rate constant for GDP dissociation was increased by 38-fold from 0.12 to 4.5 min-1. Thus, the increase in steady-state GTPase activity observed for muscarinic agonists is largely, if not exclusively, due to the increase in GDP dissociation from Gi--probably the rate-limiting step in the steady-state mechanism. Carbachol-stimulated GTPase was sensitive to ADP-ribosylation of the reconstituted Gi by pertussis toxin, but the high-affinity agonist binding was uncoupled only when the reconstituted preparation was treated with pertussis toxin in the presence of GTP and the agonist acetylcholine. These results suggest that association with the mAcChR protects Gi from ADP-ribosylation by pertussis toxin.  相似文献   

10.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

11.
Higher plant plasma membranes carry receptors of different affinity for the phytotoxin fusicoccin. Reception of fusicoccin involves proteins belonging to the highly conserved 14-3-3 family, but the complete structure of the fusicoccin receptor (FCR) is unknown. Using radiation inactivation analysis, we estimated the molecular masses of low-affinity and high-affinity FCR at 63 +/- 7 and 130 +/- 15 kD, respectively. The dose dependences of receptor inactivation indicate that microsomal specimens contain "silent" FCRs of 420 +/- 90 kD in amounts commensurate with that of the active FCRs. Both low- and high-affinity FCRs are inactivated by hydrolytic enzymes from the outer surface of the plasma membrane, and impairment of protoplast integrity causes an irreversible transition of the low-affinity binding site into the high-affinity one. A scheme is proposed for the organization of different types of FCR in the plasma membrane, implying that the membrane affinity for fusicoccin reflects the interaction between proteins in the FCR complex.  相似文献   

12.
The binding of the non-selective muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) to rat parotid membranes was characterized. Under equilibrium conditions, [3H]QNB bound to a homogenous population of muscarinic receptors (Kd, 118 +/- 19 pM; Bmax, 572 +/- 42 fmol/mg membrane protein, n = 12). The addition of G protein activators AlF4- or guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) + Mg2+ increased the Kd by 77 +/- 7% (n = 4, P less than 0.05) and 83 +/- 27% (n = 7, P less than 0.05), respectively, without a change in the Bmax or homogeneity of the binding site. GTP gamma S added without exogenous Mg2+ did not affect [3H]QNB binding. Thus, optimal QNB binding requires a muscarinic receptor/G protein interaction.  相似文献   

13.
Olianas MC  Onali P 《Life sciences》1999,65(21):2233-2240
In membranes of Chinese hamster ovary cells expressing the cloned human M1-M4 muscarinic receptor subtypes, PD 102807, a novel M4 selective antagonist, was found to counteract the M4 receptor-induced stimulation of [35S]-GTPgammaS binding to membrane G proteins with a pK(B) of 7.40, a value which was 63-, 33- and 10-fold higher than those displayed at M1 (pK(B) = 5.60), M2 (pK(B) = 5.88) and M3 (pK(B) = 6.39) receptor subtypes, respectively. In rat striatal membranes, PD 102807 antagonized the muscarinic inhibition of dopamine (DA) D1 receptor-stimulated adenylyl cyclase with a pK(B) value of 7.36. In contrast, in membranes of rat frontal cortex, PD 102807 displayed lower potencies in antagonizing either the muscarinic facilitation of corticotropin releasing hormone (CRH)-stimulated adenylyl cyclase (pK(B) = 5.79) or inhibition of Ca2+/calmodulin (Ca2+/CaM)-stimulated enzyme activity (pK(B) = 5.95). In each response investigated, PD 102807 interacted with muscarinic receptors in a manner typical of a simple competitive antagonist. These data provide additional evidence that PD 102807 is a M4-receptor preferring antagonist and that this compound can discriminate the striatal muscarinic receptors inhibiting DA D1 receptor activity from the cortical receptors mediating the potentiation of CRH receptor signalling and the inhibition of Ca2+/CaM-stimulated adenylyl cyclase activity.  相似文献   

14.
The bovine striatal dopamine D1 receptor was solubilized with a combination of sodium cholate and NaCl in the presence of phospholipids, following treatment of membranes with a dopaminergic agonist (SKF-82526-J) or antagonist (SCH-23390). The solubilized receptors were subsequently reconstituted into lipid vesicles by gel-filtration. A comparison of ligand-binding properties shows that the solubilized and reconstituted receptors bound [3H]SCH-23390 to a homogeneous site in a saturable, stereospecific and reversible manner with a Kd of 0.95 and 1.1 nM and a Bmax of 918 and 885 fmol/mg protein respectively for agonist- and antagonist-pretreated preparations. These values are very similar to those obtained for membrane-bound receptors. The competition of antagonists for [3H]SCH-23390 binding exhibited a clear D1 dopaminergic order in the reconstituted preparation obtained from either agonist or antagonist-pretreated membranes, except that (+)butaclamol was about four-fold more potent thancis-flupentixol in displacing [3H]SCH-23390 binding in preparation obtained from agonist-pretreated membranes compared to antagonist-pretreated membranes. The agonist/[3H]SCH-23390 competition studies revealed the presence of a highaffinity component of agonist binding in both the reconstituted receptor preparations. The number of high-affinity agonist binding sites, however, is 40–80% higher in reconstituted preparation obtained from antagonist-treated membrane compared to that obrained from the agonist-treated membrane. In both the preparations, 100 M guanylylimidodiphosphate (Gpp(NH)p) completely abolished the high-affinity component of agonist binding compared to partial abolition in the native membranes, indicating a close association of a G-protein with the solubilized receptors. Whether the receptor was solubilized following agonist or antagonist preincubation of the membranes, the receptor-detergent complex eluted from a steric-exclusion HPLC column with an apparent molecular size of 360,000. Preincubation of the solubilized preparations with Gpp(NH)p had virtually no effect on the elution profile suggesting a lack of guanine nucleotide-dependent dissociation of G-protein receptor complex.  相似文献   

15.
125I-Glucagon binding to rat liver plasma membranes was composed of high- and low-affinity components. N-Ethylmaleimide (NEM) and several other alkylating agents induced a dose-dependent loss of high-affinity sites. This diminished the apparent affinity of glucagon receptors for hormone without decreasing the binding capacity of membranes. Solubilized hormone-receptor complexes were fractionated as high molecular weight (Kav = 0.16) and low molecular weight (Kav = 0.46) species by gel filtration chromatography; NEM or guanosine 5'-triphosphate (GTP) diminished the fraction of high molecular weight complexes, suggesting that NEM uncouples glucagon receptor-N-protein complexes. Exposure of intact hepatocytes to the impermeable alkylating reagent p-(chloromercuri)benzenesulfonic acid failed to diminish the affinity of glucagon receptors on subsequently isolated plasma membranes, indicating that the thiol that affects receptor affinity is on the cytoplasmic side of the membrane. Hormone binding to plasma membranes was altered by NEM even after receptors were uncoupled from N proteins by GTP. These data suggest that a sensitive thiol group that affects hormone binding resides in the glucagon receptor, which may be a transmembrane protein. Alkylated membranes were fused with wild-type or cyc- S49 lymphoma cells to determine how alkylation affects the various components of the glucagon-adenylyl cyclase system. Stimulation of adenylyl cyclase with fluoride, guanylyl 5'-imidodiphosphate, glucagon, or isoproterenol was observed after fusion of cyc- S49 cells [which lack the stimulatory, guanine nucleotide binding, regulatory protein of adenylyl cyclase (Ns)] with liver membranes alkylated with 1.5 mM NEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Under reducing conditions (5% beta-mercaptoethanol) the mammalian beta-adrenergic receptor binding site from both beta 1 (porcine heart membranes) and beta 2 receptors (hamster lung and rat erythrocyte membranes) appears to reside on peptides of Mr 62,000-65,000 as determined by photoaffinity labeling with p-azido-m-[125I]iodobenzylcarazolol and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When similar experiments are performed in these same systems under a variety of non-reducing conditions, there are minimal changes in the apparent molecular weight of both the beta 1- and beta 2-adrenergic receptor binding subunits and no specifically labeled higher molecular weight proteins are observed suggesting that there are no disulfide linked subunits in mammalian beta-adrenergic receptors.  相似文献   

17.
GTPase activity has been measured in synaptic membranes from bovine retina, with and without muscarinic receptor stimulation. Maximal stimulation above basal levels was achieved with 5 microM oxotremorine and 100 microM carbachol. (4-Hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride, which is selective for the M1 muscarinic receptor, failed to stimulate GTPase activity. 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) inhibition of oxotremorine stimulation demonstrated the presence of two populations of receptors, a low-affinity site (IC50 +/- SEM, 0.63 +/- 0.18 microM) which accounted for 63% of the inhibition and a high-affinity site (IC50 less than 1 nM) which accounted for the remaining 37%. When carbachol-stimulated GTPase activity was assayed, a single 4-DAMP inhibitory site was apparent (IC50 +/- SEM, 2.0 +/- 0.9 microM). Pirenzepine inhibited GTPase activity at a single site (IC50 values +/- SEM, 46.9 +/- 11 and 25.4 +/- 6.5 microM against oxotremorine and carbachol, respectively). Methoctramine was equipotent against carbachol and oxotremorine stimulation (IC50 values, 4.2 +/- 1.8 and 6.2 +/- 1.5 microM). Inhibition of maximal carbachol and oxotremorine stimulation by muscarinic antagonists at the major site had a rank order of potency of 4-DAMP = methoctramine greater than pirenzepine. Thus, the major site for muscarinic stimulation of GTPase activity in bovine retinal membranes is pharmacologically similar to M2 receptors.  相似文献   

18.
Previously reported methods for quantifying platelet-activating factor (PAF) binding to rabbit platelet membranes were modified for studies of PAF binding to human platelet membranes. The membranes were prepared by the "glycerol lysis" method and PAF binding was quantified by using polyethylene glycol precipitation to recover membrane-bound PAF. Optimal PAF binding required buffers containing 3 to 10 mm KCl and either 5 to 10 mM MgCl2 or 5 to 10 mM CaCl2. NaCl was not as effective as KCl and concentrations of NaCl greater than 3 mM strongly inhibited PAF binding. Maximal binding occurred after incubation for 60 min at 0 degree C and was reversed by the addition of excess unlabeled PAF. PAF binding was saturable. Scatchard analysis of PAF binding to 50 micrograms of membrane protein revealed 10.3 +/- 1.7 x 10(11) receptors per milligram of membrane protein and the receptors had a Kd of 7.6 +/- 1.9 nM. The calculated receptor number, binding affinity, and specificity of binding are similar to those previously calculated for PAF binding to intact human platelets, suggesting that the membrane binding site for PAF is the PAF receptor.  相似文献   

19.
Cytochalasin B was found to bind to at least two distinct sites in human placental microvillous plasma membrane vesicles, one of which is likely to be intimately associated with the glucose transporter. These sites were distinguished by the specificity of agents able to displace bound cytochalasin B. [3H]Cytochalasin B was displaceable at one site by D-glucose but not by dihydrocytochalasin B; it was displaceable from the other by dihydrocytochalasin B but not by D-glucose. Some binding which could not be displaced by D-glucose + cytochalasin B binding site. Cytochalasin B can be photoincorporated into specific binding proteins by ultraviolet irradiation. D-Glucose specifically prevented such photoaffinity labeling of a microvillous protein component(s) of Mr = 60,000 +/- 2000 as determined by urea-sodium dodecyl sulfate acrylamide gel electrophoresis. This D-glucose-sensitive cytochalasin B binding site of the placenta is likely to be either the glucose transporter or be intimately associated with it. The molecular weight of the placental glucose transporter agrees well with the most widely accepted molecular weight for the human erythrocyte glucose transporter. Dihydrocytochalasin B prevented the photoincorporation of [3H]cytochalasin B into a polypeptide(s) of Mr = 53,000 +/- 2000. This component is probably not associated with placental glucose transport. This report presents the first identification of a sodium-independent glucose transporter from a normal human tissue other than the erythrocyte. It also presents the first molecular weight identification of a human glucose-insensitive high-affinity cytochalasin B binding protein.  相似文献   

20.
We analyzed the properties of a G protein-coupled receptor localized in cholesterol-poor vs. cholesterol-rich microdomains of the plasma membrane. For this purpose, the human oxytocin receptor, which is very sensitive against alterations of the membrane cholesterol level, was stably expressed in HEK293 cells. To calculate the total number of receptors independent of ligand binding studies, the oxytocin receptor was tagged with an enhanced green fluorescent protein (EGFP) which did not change the functional properties of the receptor. Only 1% of the oxytocin receptors were present in cholesterol-rich detergent-insoluble domains. In contrast, employing a detergent-free fractionation scheme that preserves the functional activity of the receptor, we detected 10-15% of the receptors in cholesterol-rich low-density membranes and therein the high-affinity state receptors were twofold enriched. In cholesterol-poor vs. cholesterol-rich domains, high-affinity oxytocin receptors behaved similar with respect to their agonist binding kinetics and GTP sensitivity. However, high-affinity oxytocin receptors localized in cholesterol-rich low-density membranes showed a markedly enhanced (t (1/2) approximately threefold) stability at 37 degrees C as compared with the oxytocin receptors localized in the cholesterol-poor high-density membranes. Addition of cholesterol to the high-density membranes fully protected the oxytocin receptors against loss of function. The importance of cholesterol to stabilize the oxytocin receptor was supported in experiments with solubilized receptors. Cholesterol markedly delayed the inactivation of oxytocin receptors solubilized with Chapso. In conclusion, the data of this report suggest that functional properties of heptahelical receptor proteins could differ in dependence of their localization in different membrane microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号