首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Induction ofHSP70 heat shock genes by light has been demonstrated inChlamydomonas. Our aim was to establish whether this induction by light is mediated by the heat stress sensing pathway or by an independent signal chain. Inhibitors of cytoplasmic protein synthesis revealed an initial difference. Cycloheximide and other inhibitors of protein synthesis preventedHSP70A induction upon illumination but not during heat stress. Analysis ofHSP70A induction in cells that had differentiated into gametes revealed a second difference. While heat shock resulted in elevatedHSP70A mRNA levels, light was no longer able to serve as an inducer in gametes. To identify the regulatory sequences that mediate the response of theHSP70A gene to either heat stress or light we introduced a series of progressive 5′ truncations into its promoter sequence. Analyses of the levels of mRNA transcribed from these deletion constructs showed that in most of them the responses to heat shock and light were similar, suggesting that light induction is mediated by a light-activated heat shock factor. However, we show that theHSP70A promoter also containscis-acting sequences involved in light induction that do not participate in induction by heat stress. Together, these results provide evidence for a regulation ofHSP70A gene expression by light through a heat shock-independent signal pathway.  相似文献   

2.
热休克蛋白代谢过程中Hela细胞热耐受性的变化   总被引:3,自引:0,他引:3  
HeLa细胞受热应激后,可产生一组热休克蛋白(HSP),其中HSP73/70产量最高,其合成呈现一定的规律性,受热后4h为其合成速率高峰,10h后明显减少,24h恢复正常。随着HSP合成的消失,正常蛋白质合成逐渐恢复。HSP73/70在细胞内分解遵循指数规律,其半衰期为49.9h。HSP合成及分解规律与细胞热耐受性的增加与消退基本吻合,提示二者之间存在着伴随关系,但是否存在量效关系乃至因果关系有待今后进一步探讨。  相似文献   

3.
Heat shock protein (HSP) synthesis results from various types of injury, including heat shock (HS) and some oxidants. The intracellular signals leading to HSP synthesis are not yet fully elucidated. We have studied the influence ofNNN’N’-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a metal chelator known to induce cellular zinc and copper deprivation, on resistance to heat and on hsp70 synthesis in HaCaT keratinocytes. TPEN was shown to sensitize HaCaT cells to heat shock. The effect of TPEN was neutralized by equimolar Zn2+. By the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Western blotting characterization of hsp70, it was shown that cultured HaCaT cells constitutively express the inducible form of hsp70. The application of TPEN alone slightly increases the level of hsp70 but inhibits its induction by HS. This inhibitory effect is related to metal deprivation, because it is eliminated when Cu2+ or Zn2+ ions are supplied together with TPEN. These results suggest that these metals are involved in the expression by keratinocytes of a stress protein which has a protective action against environmental stress.  相似文献   

4.
The optimal conditions capable of inducing an increase in HSP70 neosynthesis during development of the urodele amphibian Pleurodeles waltl were determined in this study. These conditions depend on temperature, heat shock duration and recovery duration. In oocytes, a heat shock response was repeatedly obtained at 37°C for 15 min followed by 1 h recovery. These results provided evidence for heat shock response at every stage considered. An increase in HSP70 synthesis was noted throughout oogenesis, but it did not lead to an increase in the amount of soluble HSP70, except for stage VI oocytes. Such results suggest that from stage II to stage IV oocytes, an equilibrium occurs between the HSP70 used and the HSP70 neosynthesized. In contrast, in stage VI oocytes, heat shock led to overproduction of HSP70. During early development, the heat shock response was repeatedly obtained only from the gastrula stage with a 37°C shock and a 15min duration of treatment. Surprisingly, during cleavage stage, the soluble HSP70 total amount increased after heat shock at a time when no HSP70 neosynthesis occurred.  相似文献   

5.
The heat shock response of growing and fully-grown pig oocytes was analyzed in vitro by determining heat shock protein70 (HSP70) synthesis under both normal conditions (39 degrees C; 0 and 6h) and after heat shock (43 degrees C; 1, 4 and 6h). The expression of HSP70 in oocytes was detected by immunoblotting analysis. Growing oocytes measuring 80-99 microm synthesized a high number of HSP70 without heat shock effect, and these were capable of increasing the synthesis of HSP70 after heat shock to a maximum after 1h. Growing oocytes measuring 100-115 microm also synthesized HSP70 without heat shock and after it, but the HSP70 synthesis was not statistically changed by increasing duration of heat shock. In fully-grown oocytes, great amounts of HSP70 were found without heat shock treatment, and the contents of HSP70 significantly decreased after heat shock. These results indicate that growing oocytes are able to synthesize HSP70 after heat shock. This ability declines at the end of the growth period, and fully-grown oocytes are unable to induce HSP70 synthesis after heat shock. HSP70 is synthesized and stored during oocyte growth. The high HSP70 synthesis in non-heat-treated growing oocytes and a great amount of HSP70 in fully-grown oocytes support the hypothesis that HSP70 is important for oocyte growth and maturation.  相似文献   

6.
7.
8.
We have previously reported the lack of HSP28 gene expression during acute and chronic thermotolerance development in L929 cells (J Cell Physiol 152: 118–125, 1992; Cancer Res 52: 5787, 1992). In contrast to HSP28, an extremely high level of inducible HSP70 synthesis was observed. These results led us to investigate the possibility of compensatory interactions between HSP70 and HSP28. To test the hypothesis, L929 cells were transfected with the human HSP28 gene contained in plasmid pCMV27. Data from Western blot and two-dimensional gel electrophoresis of [3H] leucine and [32P] orthophosphate-labeled proteins showed the synthesis and phosphorylation of HSP28 in transfected cells after heating at 45°C for 10 min. However, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was not decreased after heat shock. These results suggest an independent regulation of HSP28 and HSP70 gene expression.  相似文献   

9.
Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer’s-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain “rejuvenating” effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.  相似文献   

10.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

11.
A subset of heat shock proteins, HSP90 alpha, HSP90 beta, and a member of the HSP70 family, HSC70, shows enhanced synthesis following mitogenic activation as well as heat shock in human peripheral blood mononuclear cells. In this study, we have examined expression of mRNA for these proteins, including the major 70-kDa heat shock protein, HSP70, in mononuclear cells following either heat shock or mitogenic activation with phytohemagglutinin (PHA), ionomycin, and the phorbol ester, tetradecanoyl phorbol acetate. The results demonstrate that the kinetics of mRNA expression of these four genes generally parallel the kinetics of enhanced protein synthesis seen following either heat shock or mitogen activation and provide clear evidence that mitogen-induced synthesis of HSC70 and HSP90 is due to increased mRNA levels and not simply to enhanced translation of preexisting mRNA. Although most previous studies have focused on cell cycle regulation of HSP70 mRNA, we found that HSP70 mRNA was only slightly and transiently induced by PHA activation, while HSC70 is the predominant 70-kDa heat shock protein homologue induced by mitogens. Similarly, HSP90 alpha appears more inducible by heat shock than mitogens while the opposite is true for HSP90 beta. These results suggest that, although HSP70 and HSC70 have been shown to contain similar promoter regions, additional regulatory mechanisms which result in differential expression to a given stimulus must exist. They clearly demonstrate that human lymphocytes are an important model system for determining mechanisms for regulation of heat shock protein synthesis in unstressed cells. Finally, based on kinetics of mRNA expression, the results are consistent with the hypothesis that HSC70 and HSP90 gene expression are driven by an IL-2/IL-2 receptor-dependent pathway in human T cells.  相似文献   

12.
In aquaculture, fish are exposed to stressful conditions, which cause an increased synthesis of heat shock proteins (HSPs) at the cellular level. In this work we considered the expression of the constitutive and inducible forms of HSP70 as an indicator of stress caused by transport, during development of the sea bass (Dicentrarchus labrax), a teleost fish of high value for aquaculture. Qualitative RT-PCR analysis revealed expression of inducible HSP70 gene in larvae and fry (25, 40 and 80 days) as well as in adult tissues (liver, brain, muscle, gills, kidney, gonads, heart, spleen and skin) of both control and stressed animals. Expression of inducible HSP70 mRNA examined in different adult tissues by Real-Time PCR, was significantly higher in skin and skeletal muscle of stressed animals than in controls. Immunolocalization of inducible and constitutive forms of heat shock protein 70 (HSP70 and HSC70), reported here for the first time, demonstrated an ubiquitous distribution of HSC70 protein in several tissues of both stressed and control animals (at all stages), while inducible HSP70 protein was found only in skeletal muscle of stressed animals. In all stressed animals, regardless of their developmental stage, cortisol levels were higher than in control animals.  相似文献   

13.
The nuclear heat shock geneHSP70B ofChlamydomonas reinhardtii is inducible by heat stress and light. Induction by either environmental cue resulted in a transient elevation in HSP70B protein. Here we describe the organization and nucleotide sequence of theHSP70B gene. The deduced protein exhibits a distinctly higher homology to prokaryotic HSP70s than to those of eukaryotes, including the cytosolic HSP70A ofChlamydomonas reinhardtii. The HSP70B protein, as previously demonstrated by in vitro translation, is synthesized with a cleavable presequence. Using an HSP70B-specific antibody, this heat shock protein was localized to the chloroplast by cell fractionation experiments. A stromal location was suggested by the presence of a conserved sequence motif used for cleavage of presequences by a signal peptidase of the stroma. Amino acid alignments of HSP70 proteins from various organisms and different cellular compartments allowed the identification of sequence motifs, which are diagnostic for HSP70s of chloroplasts and cyanobacteria.  相似文献   

14.
15.
16.
The major 70 kDa heat shock protein (HSP70), which is scarcely expressed in unstressed rodent cells, was apparently induced by infection with herpes simplex virus (HSV). Infection with HSV types 1 and 2 elevated HSP70 mRNA levels within 4 hr post-infection. HSP70 synthesis and accumulation increased in HSV-infected cells. Irradiation of HSV with UV-light abolished the ability to induce HSP70 mRNA. Inhibitors of viral DNA synthesis did not affect the induction of HSP70 in infected cells. Protein synthesis within 2 hr after infection was necessary for HSP70 induction.  相似文献   

17.
  • Heat stress decreases crop growth and yield worldwide. Spermidine (Spd) is a small aliphatic amine and acts as a ubiquitous regulator for plant growth, development and stress tolerance.
  • Objectives of this study were to determine effects of exogenous Spd on changes in endogenous polyamine (PA) and γ‐aminobutyric acid (GABA) metabolism, oxidative damage, senescence and heat shock protein (HSP) expression in white clover subjected to heat stress. Physiological and molecular methods, including colorimetric assay, high performance liquid chromatography and qRT‐PCR, were applied.
  • Results showed that exogenous Spd significantly alleviated heat‐induced stress damage. Application of Spd not only increased endogenous putrescine, Spd, spermine and total PA accumulation, but also accelerated PA oxidation and improved glutamic acid decarboxylase activity, leading to GABA accumulation in leaves under heat stress. The Spd-pretreated white clover maintained a significantly higher chlorophyll (Chl) content than untreated plants under heat stress, which could be related to the roles of Spd in up‐regulating genes encoding Chl synthesis (PBGD and Mg‐CHT) and maintaining reduced Chl degradation (PaO and CHLASE) during heat stress. In addition, Spd up‐regulated HSP70, HSP70B and HSP70‐5 expression, which might function in stabilizing denatured proteins and helping proteins to folding correctly in white clover under high temperature stress.
  • In summary, exogenous Spd treatment improves the heat tolerance of white clover by altering endogenous PA and GABA content and metabolism, enhancing the antioxidant system and HSP expression and slowing leaf senescence related to an increase in Chl biosynthesis and a decrease in Chl degradation during heat stress.
  相似文献   

18.
19.
In response to heat shock (34°C, 30 min), cell morphology and actin organization in Dictyostelium discoideum are drastically changed. Loss of pseudopodia and disappearance of F-actin-containing structures were observed by using fluorescence microscopy. These changes were paralleled by a rapid decrease of the F-actin content measured by a TRITC-phalloidin binding assay. The effects of heat shock on cell morphology and actin organization are transient: After heat shock (34°C) or during a long-term heat treatment (30°C), cell morphology, F-actin patterns and F-actin content recovered/adapted to a state which is characteristic for untreated cells. Because F-actin may be stabilized by increased amounts of heat shock proteins, their response and interaction with F-actin was analyzed. After a 1 h heat treatment (34°C), the major heat shock protein of D. discoideum (HSP70) showed maximally increased synthesis rates and levels. During recovery from a 34°C shock or during a continuous heat treatment at 30°C, the HSP70 content first increased and then declined slowly toward normal levels. Pre-treatment of cells with a short heat shock of 30 min at 34°C stabilized the F-actin content when the cells were exposed to a second heat shock. Furthermore, a transient colocalization of HSP70 and actin was observed at the beginning of heat treatment (30°C) using immunological detection of HSP70 in the cytoskeletal actin fraction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号