首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Azotobacter vinelandii cells readily oxidize the dye 3,3′-diaminobenzidine (DAB), which has been previously used as an electron donor for studies on the mitochondrial cytochromec oxidase reaction. The DAB oxidase activity inA. vinelandii cells was 10-fold lower than that noted for theN,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) oxidase reaction, which is commonly used to measure terminal oxidase activity both in bacteria and mitochondria. Analyses of cell-free extracts show that DAB oxidase activity is concentrated almost exclusively in theA. vinelandii membrane fractions, most notably in the “R3” electron transport particle (ETP). Oxidation studies, which employed both whole cells and the ETP fraction, show DAB oxidase activity to be markedly sensitive to KCN, NaN3, and NH2OH. A manometric assay system was developed which readily measured DAB oxidase activity in bacteria. Preliminary studies indicate that ascorbate-DAB oxidation inAzotobacter vinelandii measures terminal cytochrome oxidase activity in a manner similar to the TMPD oxidase reaction.  相似文献   

2.
The artificial electron donor compounds p-phenylenediamine (PD), N, N, N′, N′-tetramethyl-p-phenylenediamine (TMPD), and 2,6-dichlorophenol-indophenol (DCPIP) restored the Hill reaction and photophosphorylation in chloroplasts that had been inhibited by washing with 0.8 m tris (hydroxymethyl) aminomethane (tris) buffer, pH 8.0. The tris-wash treatment inhibited the electron transport chain between water and photosystem II and electron donation occurred between the site of inhibition and photosystem II. Photoreduction of nicotinamide adenine dinucleotide phosphate (NADP) supported by 33 μm PD plus 330 μm ascorbate was largely inhibited by 1 μm 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) while that supported by 33 μm TMPD or DCPIP plus ascorbate was relatively insensitive to DCMU. Experiments with the tris-washed chloroplasts indicated that electron donors preferentially donate electrons to photosystem II but in the presence of DCMU the donors (with the exception of PD at low concentrations) could also supply electrons after the DCMU block. The PD-supported photoreduction of NADP showed the relative inefficiency in far-red light characteristic of chloroplast reactions requiring photosystem II. With phosphorylating systems involving electron donors at low concentrations (33 μm donor plus 330 μm ascorbate) photophosphorylation, which occurred with P/e2 ratios approaching unity, was completely inhibited by DCMU but with higher concentrations of the donor systems, photophosphorylation was only partially inhibited.  相似文献   

3.
It was possible to quantitate the tetramethyl-p-phenylenediamine (TMPD) oxidase reaction in Azotobacter vinelandii strain O using turbidimetrically standarized resting cell suspensions. The Q(O2) value obtained for whole cell oxidation of ascorbate-TMPD appeared to reflect the full measure of the high respiratory oxidative capability usually exhibited by this genera of organisms. The Q(O2) value for the TMPD oxidase reaction ranged from 1,700 to 2,000 and this value was equivalent to that obtained for the oxidation of the growth substrate, e.g., acetate. The kinetic analyses for TMPD oxidation by whole cells was similar to that obtained for the "particulate" A. vinelandii electron transport particle, that fraction which TMPD oxidase activity is exclusively associated with. Under the conditions used, there appeared to be no permeability problems; TMPD (reduced by ascorbate) readily penetrated the cell and oxidized at a rate comparable to that of the growth substrate. This, however, was not true for the oxidation of another electron donor, 2,6-dichloroindophenol, whose whole cell Q(O2) values, under comparable conditions, were twofold lower. The TMPD oxidase activity in A. vinelandii whole cells was found to be affected by the physiological growth conditions, and resting cells obtained from cells grown on sucrose, either under nitrogen-fixing conditions or on nitrate as the combined nitrogen source, exhibited low TMPD oxidase rates. Such low TMPD oxidase rates were also noted for chemically induced pleomorphic A. vinelandii cells, which suggests that modified growth conditions can (i) alter the nature of the intracellular terminal oxidase formed (or induced), or (ii) alter surface permeability, depending upon the growth conditions used. Preliminary studies on the quantitative TMPD oxidation reaction in mutant whole cells of both Azotobacter and a well-known Mucor bacilliformis strain AY1, deficient in cytochrome oxidase activity, showed this assay can be very useful for detecting respiratory deficiencies in the metabolism of whole cells.  相似文献   

4.
We present here molecular dynamics simulations and DNA conformational dynamics for a series of trinuclear platinum [Pt3(HPTAB)]6+-DNA adducts [HPTAB = N,N,N′,N′,N′′,N′′-hexakis (2-pyridyl-methyl)-1,3,5-tris(aminomethyl) benzene], including three types of bifunctional crosslinks and four types of trifunctional crosslinks. Our simulation results reveal that binding of the trinuclear platinum compound to a DNA duplex induces the duplex unwinding in the vicinity of the platination sites, and causes the DNA to bend toward the major groove. As a consequence, this produces a DNA molecule whose minor groove is more widened and shallow compared to that of an undamaged bare-DNA molecule. Notably, for trifunctional crosslinks, we have observed extensive DNA conformational distortions, which is rarely seen for normal platinum–DNA adducts. Our findings, in this study, thus provide further support for the idea that platinum compounds with trifunctional intra-strand or long-range-inter-strand cross-linking modes can generate larger DNA conformational distortions than other types of cross-linking modes.  相似文献   

5.
Vesicles prepared with the French press from membranes of cyanelles of Cyanophora paradoxa retain O2 evolution activity with rates up to 500 micromoles 2,6-dichlorophenolindophenol reduced per hour per milligram chlorophyll. This activity is immediately lost when the vesicles are transferred from the sucrose-phosphate-citrate preparation buffer into dilute phosphate buffer. Similar preparations from Phormidium laminosum, a thermophilic cyanobacterium retain activity under such conditions. Photosystem I activities of both cyanobacterial vesicle preparations were determined by direct spectrophotometric measurement of N,N,N′,N′-tetramethyl-p-phenylenediamine photooxidation in the presence of anthraquinone-2-sulfonate. The rates so determined were compared with rates of O2 taken up in the presence of methyl viologen or anthraquinone-2-sulfonate as electron acceptors. The predicted stoichiometry of two was observed for moles of N,N,N′,N′-tetramethyl-p-phenylenediamine oxidized per mole of oxygen taken up. Anthraquinone-2-sulfonate was the better electron acceptor, and maximal rates of 943 micromoles per hour per milligram chlorophyll for O2 uptake were observed for Phormidium laminosum preparations in the presence of superoxide dismutase. For purposes of comparison, spinach chloroplasts were assayed for similar activities. All preparations were readily assayed for photosystem I activity by the direct spectrophotometric method, which has advantages of simplicity and freedom from errors introduced by photoxidation of other substrates by photosystem I when O2 uptake is measured.  相似文献   

6.
The nuclear pore complex (NPC) mediates communication between the cytoplasm and nucleus in eukaryotic cells. Active transport of large polypeptides as well as passive diffusion of smaller (≈10 kD) macromolecules through the NPC can be inhibited by depletion of intracellular Ca2+ stores. However, the physiological relevance of this process for the regulation of nucleocytoplasmic trafficking is not yet clear. We expressed green fluorescent protein (GFP)–tagged glucocorticoid receptor (GR) and mitogen-activated protein (MAP) kinase–activated protein kinase 2 (MK2) to study the effect of Ca2+ store depletion on active transport in HM1 cells, a human embryonic kidney cell line stably transfected with the muscarinic M1 receptor. Dexamethasone-induced nuclear import of GR-GFP and anisomycin-induced nuclear export of GFP-MK2 was monitored by confocal microscopy. We found that store depletion by carbachol, thapsigargin or ionomycin had no effect on GR-GFP import, whereas pretreatment with 1,2-bis-(o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid–acetoxymethyl ester (BAPTA-AM) attenuated import significantly. Export of GFP-MK2 was not influenced by any pretreatment. Moreover, carbachol stimulated GFP-MK2 translocation to the cytoplasm in the absence of anisomycin. These results demonstrate that Ca2+ store depletion in intact HM1 cells is not directly linked to the inhibition of active protein transport through the NPC. The inhibition of GR-GFP import but not GFP-MK2 export by BAPTA-AM presumably involves a depletion-independent mechanism that interferes with components of the nuclear import pathway.  相似文献   

7.
Transport of pyrimidine nucleosides into germinating Petunia hybrida pollen is carrier-mediated, and, except for thymidine, is inhibited by the energy poisons N,N′-dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 2,4-dinitrophenol, and carbonylcyanide-m-chlorophenylhydrazone. Kinetic studies with analogs deoxyuridine and 5-bromodeoxyuridine show that they too are taken up faster than thymidine and inhibited by the energy poisons. These and other analogs inhibit uridine and cytidine transport more than thymidine, as do the inhibitors parachloromercuribenzoic acid, N-ethylmaleimide, phenylarsine oxide, o-phenanthroline, ethylene diamenetetraacetate, and ethylene glycol-bis (β-aminoethyl ether) N,N,N′N′-tetraacetic acid. Citrate, phosphate, succinate, and tartrate inhibited uptake of all pyrimidine nucleosides. The specific inhibitor of nucleoside transport in animal cells, nitrobenzylthioinosine, has little effect on pollen transport. Uridine and deoxyuridine accumulate against a concentration gradient, suggesting active transport. Except for thymidine, however, transported nucleosides were found to be extensively phosphorylated. Until mutant plants are found which do not phosphorylate uridine, it is not possible to decide unequivocally between active and nonactive transport for uridine. However, consistent with a low level of DNA synthesis in germinating Petunia pollen, it is clear that thymidine transport is nonactive and relatively slow. It is apparent from these experiments that a more sensitive way to study DNA repair in this pollen would be to use 5-bromodeoxyuridine or deoxyuridine instead of thymidine to label repaired DNA. The results show that pollen has the transport systems necessary to take up pyrimidine nucleosides from Petunia styles, where it is known that the concentration of free nucleosides increase after pollination.  相似文献   

8.
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.  相似文献   

9.
The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces.  相似文献   

10.
Muallem A  Hall DO 《Plant physiology》1982,69(5):1116-1120
The photoproduction of hydrogen by 2-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-inhibited chloroplasts from ascorbate under anaerobic conditions was studied in the pH range 5.0 to 7.5 using methyl viologen (MV), N,N,N′,N′-tetramethyl-P-phenylenediamine (TMPD), and excess hydrogenase from Desulfovibrio desulfuricans. (a) At neutral and basic pHs, the photoreduction of MV, which reacted back with photoxidized ascorbate (dehydroascorbate [DHASC]), and the rates of H2 photoproduction were very low. The slow H2 photoproduction was explained by the reversible reduction of MV by the photoproduced H2 (catalyzed by hydrogenase) and its reoxidation by DHASC resulting in H2 uptake. (b) At pH 5.2, relatively high initial rates of H2 photoproduction were obtained, which were comparable to the rates of O2 consumption at pH 5.2 by photosystem I (catalyzed by photoreduced MV). However, accumulation of photoreduced MV under anaerobic conditions was not detected. In the presence of high concentrations of protons, the H2 uptake by DHASC was very slow because the equilibrium concentration of H2-reduced MV was very small, thus allowing H2 evolution mediated by photoreduced MV to compete with the back reaction with DHASC. (c) The continuous accumulation of DHASC, which was generated together with H2, gradually slowed the H2 evolution until it stopped after about 3 hours. At high concentrations, DHASC was able to compete with the coupling of photoreduced MV to hydrogenase and H2 evolution. (d) Dithiothreitol (DTT) reduced the DHASC and consequently competed with the back reaction of the photoreduced and H2-reduced MV with DHASC. DTT thus prolonged the time period of H2 photoproduction from ascorbate and abolished the dependence of its rate on pH in the range of 5.2 to 7.5 (e) A study of H2 uptake by chemically oxidized ascorbate (in the dark) showed that MV and hydrogenase were both required to catalyze electron transfer from H2 to DHASC. TMPD prevented this H2 consumption by DHASC (in a chloroplast reaction mixture containing MV and hydrogenase). Illumination restored the H2 uptake presumably by generating reduced MV which activated the hydrogenase.  相似文献   

11.
A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N′,N′-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation.  相似文献   

12.
Protein extracted from root and leaf tissue of the dicotyledonous plants pea (Pisum sativum) and broad bean (Vicia faba) and the monocotyledonous plants wheat (Triticum aestivum) and barley (Hordeum vulgare) were shown to catalyze the incorporation of biotin-labeled cadaverine into microtiter-plate-bound N′,N′-dimethylcasein and the cross-linking of biotin-labeled casein to microtiter-plate-bound casein in a Ca2+-dependent manner. The cross-linking of biotinylated casein and the incorporation of biotin-labeled cadaverine into N′,N′-dimethylcasein were time-dependent reactions with a pH optimum of 7.9. Transglutaminase activity was shown to increase over a 2-week growth period in both the roots and leaves of pea. The product of transglutaminase's protein-cross-linking activity, ε-(γ-glutamyl)-lysine isodipeptide, was detected in root and shoot protein from pea, broad bean, wheat, and barley by cation-exchange chromatography. The presence of the isodipeptide was confirmed by reversed-phase chromatography. Hydrolysis of the isodipeptide after cation-exchange chromatography confirmed the presence of glutamate and lysine.  相似文献   

13.
Lesion delimitation and resistance of old bean (Phaselous vulgaris L., cv. Red Kidney) plants to Rhizoctonia solani Kühn have been suggested to result from increased calcium pectate formation in walls. Ultrastructural histochemistry was used to determine the site of calcium in tissues adjacent to lesions and in older bean hypocotyls. Hypocotyl lesion tissue and uninoculated control tissue were treated with ammonium oxalate or potassium pyroantimonate during fixation. Treatment with potassium pyroantimonate, but not with oxalate, resulted in granular deposits in cell walls of healthy and lesion tissue. Granules also occurred on the plasma membrane of cells adjacent to lesions and in organelles of damaged cells, but wall granule density was not increased. Cell walls from healthy 24-day-old plants had a greater granule density than those for 8-day-old plants. Wall granules were removed from thin sections with ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Energy dispersive analysis of x-rays also suggested that potassium pyroantimonate localized calcium. Chemical analyses showed that some calcium was retained in tissues after fixation. The results suggest that there are different mechanisms for lesion delimitation and age-induced resistance.  相似文献   

14.
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.  相似文献   

15.
Extracts prepared from the turgid and water-stressed leaves of wild-type tomato (Lycopersicon esculentum Mill cv Ailsa Craig) and the wilty mutants sitiens, notabilis, and flacca were tested for their ability to metabolize xanthoxin to ABA. Extracts from wild type and notabilis converted xanthoxin at similar rates, while extracts from sitiens and flacca showed little or no activity. We also observed no activity when extracts of sitiens and flacca were mixed. Similar results were obtained when ABA aldehyde was used as a substrate, in that extracts from wild type and notabilis were equally active, but extracts from flacca and sitiens showed little activity. None of the tomato extracts showed significant activity with xanthoxin acid, xanthoxin alcohol, or ABA-1′,4-′Trans-diol as substrates. Extracts from bean leaves (Phaseolus vulgaris L. cv Blue Lake) were similar to the wild-type tomato extracts in their ability to convert the various substrates to ABA, although excised bean leaves did convert ABA-1′,4′-trans-diol and xanthoxin alcohol to ABA when these substances were taken up through the petiole. These results are consistent with a role for xanthoxin as a normal intermediate on the ABA biosynthetic pathway, and they suggest that ABA aldehyde is the final ABA precursor.  相似文献   

16.
The procedure generally used for the isolation of extracellular, cell-associated proteinases of Lactococcus lactis species is based on the release of the proteinases by repeated incubation and washing of the cells in a Ca2+-free buffer. For L. lactis subsp. cremoris Wg2, as many as five incubations for 30 min at 29°C are needed in order to liberate 95% of the proteinase. Proteinase release was not affected by chloramphenicol, which indicates that release is not the result of protein synthesis during the incubations. Ca2+ inhibited, while ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) stimulated, proteinase release from the cells. The pH optimum for proteinase release ranged between 6.5 and 7.5, which was higher than the optimum pH of the proteinase measured for casein hydrolysis (i.e., 6.4). Treatment of cells with the serine proteinase inhibitor phenylmethylsulfonyl fluoride prior to the incubations in Ca2+-free buffer reduced the release of the proteinase by 70 to 80%. The residual proteinase remained cell associated but could be removed by the addition of active L. lactis subsp. cremoris Wg2 proteinase. This suggests that proteinase release from cells of L. lactis subsp. cremoris Wg2 is the result of autoproteolytic activity. From a comparison of the N-terminal amino acid sequence of the released proteinase with the complete amino acid sequence determined from the nucleotide sequence of the proteinase gene, a protein of 180 kilodaltons would be expected. However, a proteinase with a molecular weight of 165,000 was found, which indicated that further hydrolysis had occurred at the C terminus.  相似文献   

17.
Attempts were made to provide proof for the occurrence of cyclic 3′,5′-adenosine monophosphate in healthy and crown gall tissues of Vicia faba. Although our purified extracts gave positive readings in the Gilman binding assay for cyclic AMP, they were not digested by a specific cyclic 3′,5′-adenosine monophosphate phosphodiesterase from beef heart. The extracts were digested, however, by a partially purified cyclic nucleotide phosphodiesterase from carrot tissue, which attacks both cyclic 2′,3′- and 3′,5′-nucleotides. The data indicate that the substances detected in the V. faba extracts are perhaps cyclic 2′,3′-nucleotides, a possible RNA degradation product.  相似文献   

18.
Sealed tonoplast vesicles were isolated from single cells of Chara corallina with the aid of an intracellular perfusion technique in combination with a 3/10% Percoll two step gradient centrifugation. The isolated tonoplast fraction was free from plasmalemma and chloroplasts, and showed no activities of cytochrome c oxidase, and latent IDPase, but had about 10% of the NADH-cytochrome c reductase activity. The vesicles had both ATPase and PPase activities, which could be stimulated in the presence of 10 micromolar gramicidin by 170 and 130%, respectively, demonstrating the existence of sealed vesicles. Furthermore, ATP- and PPi-dependent H+ pumping through the membrane into the vesicles was shown. Both ATPase and PPase had pH optima around pH 8.5. At the physiological pH, 7.3, they still had more than 80% of their maximal activities. Ammonium molybdate, azide, and vanadate had no or little effect on the activities of both enzymes or their associated H+ pumping activities. N,N′-dicyclohexylcarbodiimide inhibited the ATPase strongly (I50 = 20 micromolar) but the PPase only weakly. The ATPase was also more sensitive to N-ethylmaleimide than the PPase. 4,4′-Stilbenedisulfonic acid affected both enzyme activities and their associated H+ pumping activities. This is in contrast to the H+-PPase of higher plants which is 4,4′-stilbenedisulfonic acid insensitive.  相似文献   

19.
Primary processes during elicitation of the phenylpropanoid pathway (PPP) were studied in Petunia hybrida cell suspensions. We tested the hypothesis that decrease of the proton gradient across the plasma membrane activates the PPP. Induction of the PPP was determined by measuring phenylalanine ammonia lyase activity. A variety of ATPase inhibitors and ionophores were tested for the ability to elicit the PPP. The ATPase inhibitors orthovanadate and N,N′-dicyclohexylcarbodiimide and the ionophores carbonyl cyanide-4-trifluoromethoxyphenylhydrazone and nigericin were all effective elicitors. Carbonyl cyanide-4-trifluoromethoxyphenylhydrazone and nigericin elicit also when used in combination with N,N′-dicyclohexylcarbodiimide. Valinomycin had little effect on phenylalanine ammonia lyase activity. Treatment with orthovanadate or nigericin led to the formation of lignin. Alkalinization of the external medium by N,N′-dicyclohexylcarbodiimide, carbonyl cyanide-4-trifluoromethoxyphenylhydrazone, and nigericin was observed directly with the use of a sensitive pH electrode and internal acidification was deduced from the changes in emission intensity of the fluorescent probe bis[3-propyl-5-oxoisoxazol-4-yl] pentamethineoxonol. These data indicate that changes in the activity of the plasmamembrane H+-ATPase, and subsequent decrease of the proton gradient (particularly of the pH gradient) by itself are sufficient to influence phenylalanine ammonia lyase activity of P. hybrida cells and are therefore important intermediates in signal transduction.  相似文献   

20.
The effects of nuclear genome duplication on the chlorophyll-protein content and photochemical activity of chloroplasts, and photosynthetic rates in leaf tissue, have been evaluated in haploid, diploid, and tetraploid individuals of the castor bean, Ricinus communis L. Analysis of this euploid series revealed that both photosystem II (2,6-dichlorophenolindophenol reduction) and photosystem I oxygen uptake (N,N,N′,N′-tetramethyl-p-phenylenediamine to methyl viologen) decrease in plastids isolated from cells with increasingly larger nuclear complement sizes. Photosynthetic O2-evolution and 14CO2-fixation rates in leaf tissue from haploid, diploid, and tetraploid individuals were also found to decrease with the increase in size of the nuclear genome. Six chlorophyll-protein complexes, in addition to a zone of detergent complexed free pigment, were resolved from sodium dodecyl sulfate-solubilized thylakoid membranes from cells of all three ploidy levels. In addition to the P700-chlorophyll a-protein complex and the light-harvesting chlorophyll a/b-protein complex, four minor complexes were revealed, two containing only chlorophyll a and two containing both chlorophyll a and b. The relative distribution of chlorophyll among the resolved chlorophyll-protein complexes and free pigment was found to be similar for all three ploidy levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号