首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding glycoprotein F (gF) of herpes simplex virus type 2 (HSV-2) was mapped to the region of the viral genome from 0.62 to 0.64 map units. This region is colinear with, and partially homologous to, the region of the HSV-1 genome previously shown to encode gC. Mapping of the gF gene was done by insertion of HSV-2 DNA fragments into the thymidine kinase gene of an HSV-1 virus and screening of the resultant recombinant viruses for the expression of gF. In this way, DNA sequences necessary for the expression of gF in infected cells were also delimited. Because several plaque morphology mutants (syncytial mutants) of HSV-1 have previously been shown to be gC-, a syncytial mutant of HSV-2 (GP) was tested for the expression of gF. It was found to be gF-, indicating that gF is not essential for replication of HSV-2 in cell culture, just as gC is not essential for replication of HSV-1. This result also suggests that the gF- and gC- phenotypes are related in the same, as yet undefined, way to the expression of a syncytial marker. A proposal to change the name of HSV-2 gF to gC (gC-2) is discussed.  相似文献   

2.
3.
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).  相似文献   

4.
The 104-S monoclonal antibody immunoprecipitated from herpes simplex virus type 2 (HSV-2)-infected cell extracts the 75,000-molecular-weight glycoprotein gF and its 65,000-molecular-weight precursor (pgF). The precursor pgF was sensitive to endoglycosidase H digestion, indicating the presence of high mannose-type oligosaccharides, whereas the stable gF product was sensitive to neuraminidase digestion, indicating the presence of sialic acid residues. The 104-S antibody also weakly precipitated the 130,000-molecular-weight herpes simplex virus type 1 (HSV-1) glycoprotein gC from both infected cell extracts and purified preparations obtained through the use of monoclonal antibody-containing immunoadsorbent columns. Immunofluorescence tests demonstrated that the 104-S antibody reacted with antigen present in cells infected with HSV-2 strain 333 and HSV-1 strain 14012 but not with antigen present in cells infected with HSV-1 strain MP, a strain deficient in HSV-1 gC production. These findings indicate that HSV-1 gC and HSV-2 gF have antigenic determinants that are related.  相似文献   

5.
A monoclonal antibody to herpes simplex virus type 2 glycoprotein C (gC-2) did not recognize wild-type herpes simplex virus type 1 gC (gC-1) but did recognize a mutant gC-1 molecule. This conversion from a type 1 to a type 2 epitope was shown to be due to a single amino acid substitution in gC-1.  相似文献   

6.
A monoclonal antibody, B1C1, binding to an epitope of antigenic site II of the herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, is a potent inhibitor of two important biological functions of gC-1: its binding to cell surface heparan sulfate and its binding to the receptor for complement factor C3b. Here, we have analyzed a B1C1-resistant HSV- 1 variant (HSV-12762/B1C1B4.2), obtained after passage of wild type HSV- 1 (HSV-12762) in the presence of high concentrations of B1C1. The transport of newly synthesized mutant gC-1 to the cell surface was comparable to that of wild type glycoprotein, but no binding of surface- associated mutant gC-1 to B1C1 was detected. However, mutant and wild type gC-1 bound equally well to other site II Mabs. Attachment of wild type but not mutant virus was inhibited by B1C1. Sequencing of the mutant gC-1 gene revealed only one nucleotide change, resulting in replacement of Thr150 by an Ile, in turn destroying an N-glycosylation site at Asn148. Loss of one complex type N-linked glycan was confirmed by endoglycosidase digestion and subsequent SDS-polyacrylamide gel electrophoresis. Circular dichroism analysis of purified gC-1 from cells infected with mutant or wild type virus did not reveal any difference in secondary structure between mutant and wild type gC-1. It was not possible to obtain a B1C1-resistant phenotype by nucleotide- directed mutagenesis of gC-1 where Asn148 was changed to a glutamine. These data demonstrated that the threonine of the glycosylation site and not the N-linked glycan in itself was essential for B1C1 binding   相似文献   

7.
Oligosaccharide chains of herpes simplex virus type 2 glycoprotein gG.2   总被引:3,自引:0,他引:3  
gG.2 glycoprotein was purified by H966 monoclonal antibodies linked to Sepharose from herpes simplex virus type 2-infected HEp-2 cells labeled with [3H] glucosamine. The glycoprotein was subjected to Pronase digestion and the glycopeptides were fractionated by Con A-Sepharose in a major fraction (88.5% of total radioactivity) unbound to the lectin gel and in a minor species which bound to the lectin as a N-linked diantennary oligosaccharide. Mild and strong acid hydrolysis of Con A-unbound and Con A-bound fractions revealed that (i) both species were highly sialylated; (ii) the Con A-unbound fraction contained mainly labeled N-acetylgalactosamine, as is the case for O-linked oligosaccharides; and (iii) the Con A-bound fraction carried the vast majority of the labeled N-acetylglucosamine present in gG.2. Three size classes of oligosaccharides were separated from mild alkaline borohydride-treated Con A-unbound glycopeptides, which accounted for about 80% of the radioactivity present in the fraction. Galactosaminitol was recovered as the major labeled product in the strong acid hydrolyzates of the oligosaccharides generated by reductive beta-elimination, indicating that they were O-glycosidically linked to the peptide backbone. Thin-layer and DEAE-Sephacel chromatography of the three O-linked oligosaccharide species indicated that disialylated tetrasaccharides and monosialylated trisaccharides were the major components, whereas neutral disaccharide was a minor component. Digestion with neuraminidase and beta-galactosidase of the O-linked oligosaccharides supported the idea that the common disaccharide core was mainly of the structure beta-galactosyl-N-acetylgalactosamine. The large occurrence of O-linked oligosaccharides differentiates this type 2-specific herpes simplex virus glycoprotein from the type-common herpesvirus glycoproteins gB, gC, and gD.  相似文献   

8.
The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1 is engaged both in viral attachment and viral immune evasion mechanisms in the infected host. Besides several N-linked glycans, gC-1 contains numerous O-linked glycans, mainly localized in two pronase-resistant clusters in the N-terminal domain of gC-1. In the present study we construct and characterize one gC-1 mutant virus, in which two basic amino acids (114K and 117R) in a putative O-glycosylation sequon were changed to alanine. We found that this modification did not modify the N-linked glycosylation but increased the content of O-linked glycans considerably. Analysis of the O-glycosylation capacity of wild-type and mutant gC-1 was performed by in vitro glycosylation assays with synthetic peptides derived from the mutant region predicted to present new O-glycosylation sites. Thus the mutant peptide region served as a better substrate for polypeptide GalNAc-transferase 2 than the wild-type peptide, resulting in increased rate and number of O-glycan attachment sites. The predicted increase in O-linked glycosylation resulted in two modifications of the biological properties of mutant virus-that is, an impaired binding to cells expressing chondroitin sulfate but not heparan sulfate on the cell surface and a significantly reduced plaque size in cultured cells. The results suggested that basic amino acids present within O-glycosylation signals may down-regulate the amount of O-linked glycans attached to a protein and that substitution of such amino acid residues may have functional consequences for a viral glycoprotein involving virus attachment to permissive cells as well as viral cell-to-cell spread.  相似文献   

9.
Nucleotide sequence and mRNA localization studies have allowed the prediction of the amino acid sequence of herpes simplex virus type 1 (HSV-1) glycoprotein C (gC). We immunized a rabbit with a conjugate of bovine serum albumin and a synthetic peptide having the same sequence as that deduced for amino acids 128 through 139 of HSV-1 gC. A very similar amino acid sequence has been predicted to exist in the related product, herpes simplex virus type 2 (HSV-2) gC, which was formerly designated gF. Preparations of crude antiserum and immunoaffinity-purified antibodies were obtained and shown to react in enzyme-linked immunosorbent assays with purified HSV-1 gC and HSV-2 gC. Although these antibodies did not detectably immunoprecipitate proteins from radiolabeled infected cell extracts, they reacted with HSV-1 gC and HSV-2 gC that were electrophoretically transferred to nitrocellulose membranes from polyacrylamide gels. These results confirm that HSV-1 gC and HSV-2 gC are immunologically related and also define a specific portion of HSV-1 gC that is conserved.  相似文献   

10.
Glycoprotein C from herpes simplex viruses types 1 and 2 (gC-1 and gC-2) acts as a receptor for the C3b fragment of the third component of complement. Our goal is to identify domains on gC involved in C3b receptor activity. Here, we used in-frame linker-insertion mutagenesis of the cloned gene for gC-2 to identify regions of the protein involved in C3b binding. We constructed 41 mutants of gC-2, each having a single, double, or triple insertion of four amino acids at sites spread across the protein. A transient transfection assay was used to characterize the expressed mutant proteins. All of the proteins were expressed on the transfected cell surface, exhibited processing of N-linked oligosaccharides, and bound one or more monoclonal antibodies recognizing distinct antigenic sites on native gC-2. This suggested that each of the mutant proteins was folded into a native structure and that a loss of C3b binding by any of the mutants could be attributed to the disruption of a specific functional domain. When the panel of insertion mutants was assayed for C3b receptor activity, we identified three distinct regions that are important for C3b binding, since an insertion within those regions abolished C3b receptor activity. Region I was located between amino acids 102 and 107, region II was located between residues 222 and 279, and region III was located between residues 307 and 379. In addition, region III has some structural features similar to a conserved motif found in complement receptor 1, the human C3b receptor. Finally, blocking experiments indicated that gC-1 and gC-2 bind to similar locations on the C3b molecule.  相似文献   

11.
The pathogenesis of herpes simplex virus type 1 (HSV-1) implies the sequential infection of many cell types from mucosal cells to neurons, each having a unique pattern of protein glycosylation. The HSV-1 glycoprotein gC-1 is highly glycosylated and contains not only N-linked glycans but also a large number of O-linked glycans, some of which are clustered into two pronase-resistant arrays in the vicinity of the HSV-1 receptor-binding domain of gC-1. The aim of the present study was to characterize gC-1 signals for addition of clustered glycans, to determine the efficacy of synthetic peptides, representing putative O-glycosylation signals, as substrates for a panel of GalNAc transferases, and to identify possible effects of early O-linked glycosylation on the biological functions of gC-1. Gel filtration analysis of the pronase-resistant gC-1 O-glycan clusters from a glycoprotein mutant, lacking a site for N-linked glycosylation at Asn 73 in the vicinity of the O-glycosylation signal, suggested that one function of this N-linked glycan was to modulate the access for GalNAc transferases to one particular O-glycosylation peptide signal (aa 80-104). The ability of four GalNAc-transferase isoenzymes with different cell type expression patterns to initialize O-glycosylation of synthetic gC-1 derived peptides was analyzed. Two synthetic gC-1 peptides (aa 55-69 and aa 80-104) were excellent substrates for all four GalNAc-transferases, suggesting that cell types expressing less frequent GalNAc transferase species with unusual acceptor peptide sequence specificities may also produce a highly O-glycosylated gC-1 after HSV-1 infection. The O-linked glycans were not essential for cell surface expression of gC-1, but monoclonal antibody-assisted epitope analysis of N-acetylgalactosaminidase-treated gC-1 showed that the O-linked monosaccharide GalNAc contributed to expression of a three-dimensional epitope overlapping the heparan sulfate-binding domain of gC-1.  相似文献   

12.
The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC.  相似文献   

13.
The O-linked oligosaccharides on mature forms of herpes simplex virus type 1 (HSV1) glycoproteins were characterized, and were found to account largely for the lower electrophoretic mobilities of these forms relative to the mobilities of immature forms. Other posttranslational modifications of HSV1 glycoproteins (designated gB, gC, gD and gE) were related temporally to the discrete shifts in electrophoretic mobilities that signal acquisition of the O-linked oligosaccharides. Fatty acid acylation (principally of gE) could be detected just prior to the shifts, whereas conversion of high-mannosetype N-linked oligosaccharides to the complex type occurred coincident with the shifts. The addition of O-linked oligosaccharides did not occur in cells treated with the ionophore monensin or in a ricinresistant cell line defective in the processing of N-linked oligosaccharides. We conclude that extension of O-linked oligosaccharide chains on HSV1 glycoproteins, and probably also attachment of the first O-linked sugars, occurs as a late posttranslational modification in the Golgi apparatus.  相似文献   

14.
Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption.  相似文献   

15.
The fine structure of the antigenic determinants of herpes simplex virus type 1 and 2 glycoprotein D (gD) was analyzed to determine whether structural differences underlie the differential immunogenicity of these glycoproteins. A region common to herpes simplex virus type 1 and 2 gD (amino acid residues 11 to 19) and two sites specific for herpes simplex virus type 2 gD (one determined by proline at position 7, the other determined by asparagine at position 21) were localized within the N-terminal 23 amino acids of gD by synthesis of peptides and comparison of their cross-reactivity with antisera raised to herpes simplex virus type 1 and 2 gD. The secondary structure of these peptides, as predicted by computer analysis, is discussed in relation to their immunogenicity.  相似文献   

16.
Glycoprotein C from herpes simplex virus type 1 (gC-1 from HSV-1) acts as a receptor for the C3b fragment of the third component of complement on HSV-1-infected cell surfaces. Direct binding assays with purified gC-1 and C3b demonstrate that other viral and cellular proteins are not required for this interaction. Although C3b receptor activity is not expressed on HSV-2-infected cell surfaces, purified gC-2 specifically binds C3b in direct binding assays, suggesting that gC-1 and gC-2 are functionally similar. Here, we used a transient transfection system to further characterize the role of gC-1 and gC-2 as C3b receptors and to localize the site(s) on gC involved in C3b binding. The genes for gC-1 and gC-2 were each cloned into a eucaryotic expression vector containing the Rous sarcoma virus long terminal repeat as the promoter and transfected into NIH 3T3 cells. The expressed proteins were similar in molecular size, extent of carbohydrate processing, and antigenic properties to gC-1 and gC-2 purified from infected cells. Using a double-label immunofluorescence assay, we found that both gC-1 and gC-2 were expressed on the surfaces of transfected cells and bound C3b. These results suggest that other proteins expressed during HSV-2 infection prevent receptor activity. We constructed three in-frame deletion mutants of gC-2 to identify domains on the protein important for C3b receptor activity. These mutants lacked amino acids 26 to 73, 219 to 244, or 318 to 346. The mutant protein lacking residues 26 to 73 was reactive with two monoclonal antibodies recognizing distinct epitopes, showed a wild-type pattern of carbohydrate processing, and bound C3b on the transfected cell surface. These results suggest that residues 26 to 73 are not involved in C3b binding. The other two mutant proteins were present on the cell surface, but did not bind C3b. In addition, these mutant proteins showed altered patterns of carbohydrate processing, formed aggregates, and were no longer recognized by the monoclonal antibodies. These properties indicate that removal of residues 219 to 244 or 318 to 346 disrupted the native conformation of gC-2, possibly owing to an alteration in the spacing between critical cysteine residues.  相似文献   

17.
Two forms of herpes simplex virus glycoprotein gD were recombined into Autographa californica nuclear polyhedrosis virus (baculovirus) and expressed in infected Spodoptera frugiperda (Sf9) cells. Each protein was truncated at residue 306 of mature gD. One form, gD-1(306t), contains the coding sequence of Patton strain herpes simplex virus type 1 gD; the other, gD-1(QAAt), contains three mutations which eliminate all signals for addition of N-linked oligosaccharides. Prior to recombination, each gene was cloned into the baculovirus transfer vector pVT-Bac, which permits insertion of the gene minus its natural signal peptide in frame with the signal peptide of honeybee melittin. As in the case with many other baculovirus transfer vectors, pVT-Bac also contains the promoter for the baculovirus polyhedrin gene and flanking sequences to permit recombination into the polyhedrin site of baculovirus. Each gD gene was engineered to contain codons for five additional histidine residues following histidine at residue 306, to facilitate purification of the secreted protein on nickel-containing resins. Both forms of gD-1 were abundantly expressed and secreted from infected Sf9 cells, reaching a maximum at 96 h postinfection for gD-1(306t) and 72 h postinfection for gD-1(QAAt). Secretion of the latter protein was less efficient than gD-1(306t), possibly because of the absence of N-linked oligosaccharides from gD-1(QAAt). Purification of the two proteins by a combination of immunoaffinity chromatography, nickel-agarose chromatography, and gel filtration yielded products that were > 99% pure, with excellent recovery. We are able to obtain 20 mg of purified gD-1(306t) and 1 to 5 mg of purified gD-1(QAAt) per liter of infected insect cells grown in suspension. Both proteins reacted with monoclonal antibodies to discontinuous epitopes, indicating that they retain native structure. Use of this system for gD expression makes crystallization trials feasible.  相似文献   

18.
We recently reported that herpes simplex virus type 1 (HSV-1) can cause agglutination of murine erythrocytes (E. Trybala, Z. Larski, and J. Wisniewski, Arch. Virol. 113:89-94, 1990). We now demonstrate that the mechanism of this hemagglutination is glycoprotein C-mediated binding of virus to heparan sulfate moieties at the surface of erythrocytes. Hemagglutination was found to be a common property of all gC-expressing laboratory strains and clinical isolates of HSV-1 tested. Mutants of HSV-1 deficient in glycoprotein C caused no specific hemagglutination, whereas their derivatives transfected with a functional gC-1 gene, thus reconstituting gC expression, regained full hemagglutinating activity. Hemagglutination activity was inhibited by antibodies against gC-1 but not by antibodies with specificity for glycoproteins gB, gD, or gE or by murine antiserum raised against the MP strain of HSV-1, which is gC deficient. Finally, purified gC-1 protein, like whole HSV-1 virions, showed high hemagglutinating activity which was inhibited by heparan sulfate and/or heparin and was completely prevented by pretreatment of erythrocytes with heparitinase, providing evidence that gC-1 mediates hemagglutination by binding to heparan sulfate at the cell surface. Thus, HSV-1-induced hemagglutination is gC-1 dependent and resembles the recently proposed mechanism by which HSV-1 attaches to surface heparans on susceptible cells, providing a simple model for initial events in the virus-cell interaction.  相似文献   

19.
Previously (Holland et al., J. Virol. 52:566-574, 1984; Kikuchi et al., J. Virol. 52:806-815, 1984) we described the isolation and partial characterization of over 100 herpes simplex virus type 1 mutants which were resistant to neutralization by a pool of glycoprotein C- (gC) specific monoclonal antibodies. The genetic basis for the inability of several of these gC- mutants to express an immunoreactive envelope form of gC is reported here. Comparative nucleotide sequence analysis of the gC gene of the six mutants gC-3, gC-8, gC-49, gC-53, gC-85, and synLD70, which secrete truncated gC polypeptides, with that of the wild-type KOS 321 gC gene revealed that these mutant phenotypes were caused by frameshift or nonsense mutations, resulting in premature termination of gC translation. Secretion of the gC polypeptide from cells infected with these mutants was due to the lack of a functional transmembrane anchor sequence. The six secretor mutants were tested for suppression of amber mutations in mixed infection with a simian virus 40 amber suppressor vector. Mutant gC-85 was suppressed and produced a wild-type-sized membrane-bound gC. Nucleotide sequence analysis of the six gC deletion mutants gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98 revealed that they carried identical deletions which removed 1,702 base pairs of the gC gene. The deletion, which was internal to the gC gene, removed the entire gC coding sequence and accounted for the novel 1.1-kilobase mRNA previously seen in infections with these mutants. The mutant gC-44 was previously shown to produce a membrane-bound gC protein indistinguishable in molecular weight from wild-type gC. This mutant differed from wild-type virus in that it had reduced reactivity with virus-neutralizing monoclonal antibodies. Nucleotide sequence analysis of the gC gene of mutant gC-44 demonstrated a point mutation which changed amino acid 329 of gC from a serine to a phenylalanine.  相似文献   

20.
Herpes simplex virus type 2 (HSV-2) mutants that were unable to express glycoprotein C (gC-2) were isolated. Deletions were made in a cloned copy of the gC-2 gene, and recombinant viruses containing these deletions were screened by using an immunoreactive plaque selection protocol. The viruses did not display a syncytial phenotype. Intravaginal inoculation of BALB/cJ mice with one of the HSV-2 gC-2- viruses produced local inflammation followed by a lethal spread of the viral infection into the nervous system in a manner identical to that produced by parental HSV-2 strain 333. Similarly, intracerebral inoculation of DBA-2 mice with the gC-2- virus produced a lethal neurological disease paralleling that caused by HSV-2 strain 333. These results indicate that gC-2 is not required for the spread of HSV-2 infections in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号