首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Initiation of inhalation anthrax is believed to involve phagocytosis of Bacillus anthracis spores by alveolar macrophages, followed by spore germination within the phagolysosome. In order to establish a systemic infection, it is predicted that bacilli then escape from the macrophage and replicate extracellularly. Mechanisms utilized by B. anthracis to escape from the macrophage are not well characterized, but a role for anthrax toxin has been proposed. Here we report the isolation of an anthrax toxin-resistant cell line (R3D) following chemical mutagenesis of toxin-sensitive RAW 264.7 murine macrophage cells. Both R3D and RAW 264.7 cells phagocytize spores of a B. anthracis Sterne strain. However, RAW 264.7 cells are killed following spore challenge, whereas R3D cells survive. Resistance to toxin and spore challenge correlates with loss of expression of anthrax toxin receptor 2 (ANTXR2/CMG-2). When R3D cells are complemented with cDNA encoding either murine ANTXR2 or human anthrax toxin receptor 1 (ANTXR1/TEM-8), toxin and spore challenge susceptibility are restored, indicating that over-expression of either ANTXR can confer susceptibility to anthrax spore challenge. Taken together, these results indicate that anthrax toxin expression by the germinated spore enables B. anthracis killing of the macrophage from within.  相似文献   

2.
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.  相似文献   

3.

Background

Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.

Methodology

Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions

We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.  相似文献   

4.
Lethal toxin is a major anthrax virulence factor, causing the rapid death of experimental animals. Lethal toxin can enter most cell types, but only certain macrophages and cell lines are susceptible to toxin-mediated cytolysis. We have shown that in murine RAW 264.7 cells, sublytic amounts of lethal toxin trigger intracellular signaling events typical for apoptosis, including changes in membrane permeability, loss of mitochondrial membrane potential, and DNA fragmentation. The cells were protected from the toxin by specific inhibitors of caspase-1, -2, -3, -4, -6, and -8. Phagocytic activity of macrophages was inhibited by sublytic concentrations of lethal toxin. Infection of cells with anthrax (Sterne) spores impaired their bactericidal capacity, which could be reversed by a lethal toxin inhibitor, bestatin. We suggest that apoptosis rather than direct lysis is biologically relevant to lethal toxin intracellular activity.  相似文献   

5.
Herein we report the knock-on cytotoxic effect of lethal toxin (LeTx) on human umbilical vascular endothelial cells (HUVECs). HUVECs were treated either directly with LeTx or indirectly with LeTx conditioned medium (LeTxCM) prepared from RAW264.7 macrophage cells. Cytotoxicity assays were done on HUVECs and A549 cells using LeTx. HUVECs were more susceptible to LeTx (61-74% survivals) as compared to A549 cells (83-94% survivals, P < 0.005). However, LeTxCM from RAW264.7 further potentiated killing of HUVECs (37% survival) compared to the LeTxCM from A549 cells (up to 70-100% survivals). LeTxCM challenge induced an apoptotic cell death in HUVECs, and this was confirmed by reduction of BCL-2 levels to 54%. Protective antigen (PA) binding to macrophage cell line RAW264.7 > HUVECs > A549 cells. Thus, we postulate that after the initial prodormal phase of pulmonary entry, LeTx causes not only significant direct damage to macrophages and endothelial cells, but also mediates additional indirect damage to endothelial cells mediated by a knock-on effect of LeTx on macrophages that causes apoptotic cell death in endothelial cells.  相似文献   

6.
Anthrax toxin (AnTx) plays a key role in the pathogenesis of anthrax. AnTx is composed of three proteins: protective antigen (PA), edema factor, and lethal factor (LF). PA is not toxic but serves to bind cells and translocate the toxic edema factor or LF moieties to the cytosol. Recently, the low-density lipoprotein receptor-related protein LRP6 has been reported to mediate internalization and lethality of AnTx. Based on its similarity to LRP6, we hypothesized that LRP5 may also play a role in cellular uptake of AnTx. We assayed PA-dependent uptake of anthrax LF or a cytotoxic LF fusion protein (FP59) in cells and mice harboring targeted deletions of Lrp5 or Lrp6. Unexpectedly, we observed that uptake was unaltered in the presence or absence of either Lrp5 or Lrp6 expression. Moreover, we observed efficient PA-mediated uptake into anthrax toxin receptor (ANTXR)-deficient Chinese hamster ovary cells (PR230) that had been stably engineered to express either human ANTXR1 or human ANTXR2 in the presence or absence of siRNA specific for LRP5 or LRP6. Our results demonstrate that neither LRP5 nor LRP6 is necessary for PA-mediated internalization or lethality of anthrax lethal toxin.  相似文献   

7.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

8.
Here, we report the results of a quantitative high-throughput screen (qHTS) measuring the endocytosis and translocation of a β-lactamase-fused-lethal factor and the identification of small molecules capable of obstructing the process of anthrax toxin internalization. Several small molecules protect RAW264.7 macrophages and CHO cells from anthrax lethal toxin and protected cells from an LF-Pseudomonas exotoxin fusion protein and diphtheria toxin. Further efforts demonstrated that these compounds impaired the PA heptamer pre-pore to pore conversion in cells expressing the CMG2 receptor, but not the related TEM8 receptor, indicating that these compounds likely interfere with toxin internalization.  相似文献   

9.
Anthrax lethal toxin (LeTx) is a virulence factor secreted by Bacillus anthracis and has direct cytotoxic effects on most cells once released into the cytoplasm. The cytoplasmic delivery of the proteolytically active component of LeTx, lethal factor (LF), is carried out by the transporter component, protective antigen, which interacts with either of two known surface receptors known as anthrax toxin receptor (ANTXR) 1 and 2. We found that the cytoplasmic delivery of LF by ANTXR2 was mediated by cathepsin B (CTSB) and required lysosomal fusion with LeTx-containing endosomes. Also, binding of protective antigen to ANXTR1 or -2 triggered autophagy, which facilitated the cytoplasmic delivery of ANTXR2-associated LF. We found that whereas cells treated with the membrane-permeable CTSB inhibitor CA074-Me- or CTSB-deficient cells had no defect in fusion of LC3-containing autophagic vacuoles with lysosomes, autophagic flux was significantly delayed. These results suggested that the ANTXR2-mediated cytoplasmic delivery of LF was enhanced by CTSB-dependent autophagic flux.  相似文献   

10.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

11.
Microparticles are membrane-derived vesicles that are released from cells during activation or cell death. These particles can serve as mediators of intercellular cross-talk and induce a variety of cellular responses. Previous studies have shown that macrophages undergo apoptosis after phagocytosing microparticles. Here, we have addressed the hypothesis that microparticles trigger this process via lipid pathways. In these experiments, microparticles induced apoptosis in primary macrophage cells or cell lines (RAW 264.7 or U937) with up to a 5-fold increase. Preincubation of macrophages with phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)BP) reduced the microparticle-induced apoptosis in a dose-dependent manner. PtdIns(3,5)BP is a specific inhibitor of the acid sphingomyelinase and thus can block the generation of pro-apoptotic ceramides. Similarly, the pre-incubation of macrophages with PtdIns(3,5)BP prevented microparticle-induced upregulation of caspase 8, which is a major target molecule of ceramide action in the apoptosis pathway. PtdIns(3,5)BP, however, had no effect on the spontaneous rate of apoptosis. To evaluate further signaling pathways induced by microparticles, the extracellular signal regulated kinase (ERK-) 1 was investigated. This kinase plays a role in activating phospholipases A2 which cleaves membrane phospholipids into arachidonic acid; microparticles have been suggested to be a preferred substrate for phospholipases A2. As shown in our experiments, microparticles strongly increased the amount of phosphorylated ERK1/2 in RAW 264.7 macrophages in a time-dependent manner, peaking 15 min after co-incubation. Addition of PD98059, a specific inhibitor of ERK1, prevented the increase in apoptosis of RAW 264.7 macrophages. Together, these data suggest that microparticles perturb lipid homeostasis of macrophages and thereby induce apoptosis. These results emphasize the importance of biolipids in the cellular cross-talk of immune cells. Based on the fact that in clinical situations with excessive cell death such as malignancies, autoimmune diseases and following chemotherapies high levels of circulating microparticles might modulate phagocytosing cells, a suppression of the immune response might occur due to loss of macrophages.  相似文献   

12.
Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.  相似文献   

13.
Anthrax toxin: a tripartite lethal combination   总被引:12,自引:0,他引:12  
Anthrax is a severe bacterial infection that occurs when Bacillus anthracis spores gain access into the body and germinate in macrophages, causing septicemia and toxemia. Anthrax toxin is a binary A-B toxin composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA mediates the entry of either LF or EF into the cytosol of host cells. LF is a zinc metalloprotease that inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defences. Inhibitors targeting different steps of toxin activity have recently been developed. Anthrax toxin has also been exploited as a therapeutic agent against cancer.  相似文献   

14.
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW 264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.  相似文献   

15.
Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-kappaB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.  相似文献   

16.
Anthrax toxin, which is released from the Gram-positive bacterium Bacillus anthracis, is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). PA binds a receptor on the surface of the target cell and further assembles into a homo-heptameric pore through which EF and LF translocate into the cytosol. Two distinct cellular receptors for anthrax toxin, TEM8/ANTXR1 and CMG2/ANTXR2, have been identified, and it is known that their extracellular domains bind PA with low and high affinities, respectively. Here, we report the crystal structure of the TEM8 extracellular vWA domain at 1.7 Å resolution. The overall structure has a typical integrin fold and is similar to that of the previously published CMG2 structure. In addition, using structure-based mutagenesis, we demonstrate that the putative interface region of TEM8 with PA (consisting of residues 56, 57, and 154–160) is responsible for the PA-binding affinity differences between the two receptors. In particular, Leu56 was shown to be a key factor for the lower affinity of TEM8 towards PA compared with CMG2. Because of its high affinity for PA and low expression in normal tissues, an isolated extracellular vWA domain of the L56A TEM8 variant may serve as a potent antitoxin and a potential therapeutic treatment for anthrax infection. Moreover, as TEM8 is often over-expressed in tumor cells, our TEM8 crystal structure may provide new insights into how to design PA mutants that preferentially target tumor cells.  相似文献   

17.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

18.
Anthrax lethal toxin (LT) comprises two proteins: the protective antigen (PA) and the lethal factor (LF). The LT is cytotoxic to macrophage-like cell line J774A.1. Pre-treatment of these cells with neomycin, a phospholipase C inhibitor, protected them against anthrax LT cytotoxicity. Protection obtained with neomycin indicated that LT stimulates phospholipase C in these cells. It was found that levels of inositol 1,4,5-triphosphate (IP3) dramatically increased in toxin-treated cells. The rise in IP3 levels was proportional to the dose of LF that was allowed to bind to receptor-bound PA. By using protein kinase C (PKC) inhibitors, we found that the activation of PKC is required for mediating anthrax LT cytotoxicity. Activation of phospholipase C or PKC is not required for the binding of PA to the cell surface receptors or for the uptake or internalisation of the toxin. In this study, we demonstrate that the IP3 signalling cascade is initiated by anthrax lethal toxin in J774A.1 cells. The second messengers generated during the cascade aid LF in mediating lethality only after its translocation into the cytosol.  相似文献   

19.
Anthrax toxin produced by Bacillus anthracis is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF into the cytosol. EF is a calmodulin-dependent adenylate cyclase that causes edema whereas LF is a zinc metalloprotease and leads to necrosis of macrophages. It is also important to note that the exact mechanism of LF action is still unclear. With this view in mind, in the present study, we investigated a proteome wide effect of anthrax lethal toxin (LT) on mouse macrophage cells (J774A.1). Proteome analysis of LT-treated and control macrophages revealed 41 differentially expressed protein spots, among which phosphoglycerate kinase I, enolase I, ATP synthase (beta subunit), tubulin beta2, gamma-actin, Hsp70, 14-3-3 zeta protein and tyrosine/tryptophan-3-monooxygenase were found to be down-regulated, while T-complex protein-1, vimentin, ERp29 and GRP78 were found to be up-regulated in the LT-treated macrophages. Analysis of up- and down-regulated proteins revealed that primarily the stress response and energy generation proteins play an important role in the LT-mediated macrophage cell death.  相似文献   

20.
Cell death and cell survival are central components of normal development and pathologic states. Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine that regulates both cell growth and cell death. To better understand the molecular mechanisms that control cell death or survival, we investigated the role of TGF-beta1 in the apoptotic process by dominant-negative inhibition of both TGF-beta1 and mitogen-activated protein kinase (MAPK) signaling pathways. Murine macrophages (RAW 264.7) undergo apoptosis following serum deprivation, as determined by DNA laddering assay. However, apoptosis is prevented in serum-deprived macrophages by the presence of exogenous TGF-beta1. Using stably transfected RAW 264.7 cells with the kinase-deleted dominant-negative mutant of TbetaR-II (TbetaR-IIM) cDNA, we demonstrate that this protective effect by TGF-beta1 is completely abrogated. To determine the downstream signaling pathways, we examined TGF-beta1 effects on the MAPK pathway. We show that TGF-beta1 induces the extracellular signal-regulated kinase (ERK) activity in a time-dependent manner up to 4 h after stimulation. Furthermore, TGF-beta1 does not rescue serum deprivation-induced apoptosis in RAW 264.7 cells transfected with a dominant-negative mutant MAPK (ERK2) cDNA or in wild type RAW 264.7 cells in the presence of the MAPK kinase (MEK1) inhibitor. Taken together, our data demonstrate for the first time that TGF-beta1 is an inhibitor of apoptosis in cultured macrophages and may serve as a cell survival factor via TbetaR-II-mediated signaling and downstream intracellular MAPK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号