首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation.  相似文献   

2.
Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.  相似文献   

3.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methanol auxotrophs have proved successful, these studies focused on scarce and expensive co-substrates. Here, we engineered E. coli for methanol-dependent growth on glucose, an abundant and inexpensive co-substrate, via deletion of glucose 6-phosphate isomerase (pgi), phosphogluconate dehydratase (edd), and ribose 5-phosphate isomerases (rpiAB). Since the parental strain did not exhibit methanol-dependent growth on glucose in minimal medium, we first achieved methanol-dependent growth via amino acid supplementation and used this medium to evolve the strain for methanol-dependent growth in glucose minimal medium. The evolved strain exhibited a maximum growth rate of 0.15 h−1 in glucose minimal medium with methanol, which is comparable to that of other synthetic methanol auxotrophs. Whole genome sequencing and 13C-metabolic flux analysis revealed the causative mutations in the evolved strain. A mutation in the phosphotransferase system enzyme I gene (ptsI) resulted in a reduced glucose uptake rate to maintain a one-to-one molar ratio of substrate utilization. Deletion of the e14 prophage DNA region resulted in two non-synonymous mutations in the isocitrate dehydrogenase (icd) gene, which reduced TCA cycle carbon flux to maintain the internal redox state. In high cell density glucose fed-batch fermentation, methanol-dependent acetone production resulted in 22% average carbon labeling of acetone from 13C-methanol, which far surpasses that of the previous best (2.4%) found with methylotrophic E. coli Δpgi. This study addresses the need to identify appropriate co-substrates for engineering synthetic methanol auxotrophs and provides a basis for the next steps toward industrial one-carbon bioprocessing.  相似文献   

4.
One-carbon (C1) compounds, such as methanol, have recently gained attention as alternative low-cost and non-food feedstocks for microbial bioprocesses. Considerable research efforts are thus currently focused on the generation of synthetic methylotrophs by transferring methanol assimilation pathways into established bacterial production hosts. In this study, we used an iterative combination of dry and wet approaches to design, implement and optimize this metabolic trait in the most common chassis, E. coli. Through in silico modelling, we designed a new route that “mixed and matched” two methylotrophic enzymes: a bacterial methanol dehydrogenase (Mdh) and a dihydroxyacetone synthase (Das) from yeast. To identify the best combination of enzymes to introduce into E. coli, we built a library of 266 pathway variants containing different combinations of Mdh and Das homologues and screened it using high-throughput 13C-labeling experiments. The highest level of incorporation of methanol into central metabolism intermediates (e.g. 22% into the PEP), was obtained using a variant composed of a Mdh from A. gerneri and a codon-optimized version of P. angusta Das. Finally, the activity of this new synthetic pathway was further improved by engineering strategic metabolic targets identified using omics and modelling approaches. The final synthetic strain had 1.5 to 5.9 times higher methanol assimilation in intracellular metabolites and proteinogenic amino acids than the starting strain did. Broadening the repertoire of methanol assimilation pathways is one step further toward synthetic methylotrophy in E. coli.  相似文献   

5.
6.
We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N‐methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl‐CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions.  相似文献   

7.
Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.  相似文献   

8.
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment–water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment–water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.  相似文献   

9.
10.
To develop a host-vector system forMethylobacterium sp. using a construct based on a small indigenous methylotrophic plasmid, theE. coliMethylobacterium sp. shuttle vector pWUBR (12.7 kb, Apr, Tcr) was constructed by joining theE. coli plasmid pBR328 and the cryptic plasmid pWU7 (7.8 kb), isolated from the soil facultative methylotrophic bacterium,Methylobacterium sp. strain M17.Via mobilization by the pDPT51 R plasmid, belonging to the IncP-1 incompatibility group, plasmid pWUBR was transferred into the original host of cryptic plasmid pWU7, strain M17, where a competition between the introduced hybrid plasmid and the indigenous cryptic plasmid took place, and into the plasmidlessMethylobacterium sp. strain R2b. The stability of pWUBR in Tcr methylotrophic transconjugants after 25 generations of growth under nonselective conditions was more than 90 % in both hosts. The ability to replicate in R2b strain demonstrates that the host spectrum of pWUBR is not restricted to the original host of pWU7 and indicates the possibility to use the present system for other methylotrophs.  相似文献   

11.
Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.  相似文献   

12.
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD‐dependent methanol dehydrogenase (Mdh) variants, the rate‐limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross‐talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build‐up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.  相似文献   

13.
14.
Summary Biosynthetic preparation of2H- and13C- labeled amino acids was studied using a leucine-producing mutant of the obligate methylotroph,Methylobacillus flagellatum. The strain was cultivated in various media containing13C- or2H-analogs of methanol. The total protein from each experiment was subjected to acid hydrolysis and converted into a mixture of dansyl amino acid methyl esters. The samples of excreted leucine were converted into methyl esters of dansyl and benzyloxycarbonyl derivatives. Electron impact mass spectrometry was performed to detect stable isotope enrichment of the amino acids. According to the mass spectrometric analysis it is feasible to use methylotrophic microorganisms for the preparation of2H- and13C- analogs of amino acids by labeled methanol bioconversion; the excreted amino acids can be convenient for express analysis as an indicator of isotopic enrichment of the total protein. The data obtained testified to a high efficiency of dansyl derivatization for mass spectrometric analysis of complex amino acid mixtures.  相似文献   

15.
Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions.  相似文献   

16.
Several tens of methanol-utilizing bacterial strains isolated from soil were screened for the presence of plasmids. From the obligate methylotrophMethylomonas sp. strain R103a plasmid pIH36 (36 kb) was isolated and its restriction map was constructed. In pink-pigmented facultative methylotrophs (PPFM), belonging to the genusMethylobacterium four plasmids were detected: plasmids pIB200 (200 kb) and pIB14 (14 kb) in the strain R15d and plasmids pWU14 (14 kb) and pWU7 (7.8 kb) in the strain M17. Because of the small size and the presence of several unique REN sites (HindIII, EcoRI, NcoI), plasmid pWU7 was chosen for the construction of a vector for cloning in methylotrophs. Cointegrates pKWU7A and pKWU7B were formed between pWU7 and theE. coli plasmid pK19 Kmr, which were checked for conjugative transfer fromE. coli into the methylotrophic host.  相似文献   

17.
18.
Summary Brevibacterium methylicum is a newly isolated Gram-positive facultatively methylotrophic bacterium that uses the NAD+-dependent methanol dehydrogenase for methanol oxidation and assimilates its carbon via the ribulose monophosphate cycle. Protoplasts prepared by lysozyme treatment of B. methylicum cells grown in the presence of glycine were transformed by plasmid shuttle vectors pCEM500 (16.5 kb; Smr/Spr, Kmr/Gmr) and pEC71 (7.1 kb; Kmr/Nmr) constructed on the basis of B. lactofermentum plasmid pAM330 and replicating in Escherichia coli and in amino-acid-producing coryneform bacteria. The resistance markers were found to be expressed in B. methylicum and autonomous plasmid DNAs of various size were isolated from the transformants. The presence of the pAM330 replicon in these plasmids was demonstrated by DNA-DNA hybridization experiments. Offprint requests to: J. Nevera  相似文献   

19.
Stable isotope probing (SIP) allows the isolation of nucleic acids from targeted metabolically active organisms in environmental samples. In previous studies, DNA-SIP has been performed with the one-carbon growth substrates methane and methanol to study methylotrophic organisms. The methylotrophs that incorporated the labelled substrate were identified with polymerase chain reaction and sequencing of 16S rRNA and 'functional genes' for methanotrophs (mxaF, pmoA, mmoX). In this study, a SIP experiment was performed using a forest soil sample incubated with (13)CH(4), and the (13)C-DNA was purified and cloned into a bacterial artificial chromosome (BAC) plasmid. A library of 2300 clones was generated and most of the clones contained inserts between 10 and 30 kb. The library was probed for key methylotrophy genes and a 15.2 kb clone containing a pmoCAB operon, encoding particulate methane monooxygenase, was identified and sequenced. Analysis of the pmoA sequence suggested that the clone was most similar to that of a Methylocystis sp. previously detected in this forest soil. Twelve other open reading frames were identified on the clone, including the gene encoding beta-ribofuranosylaminobenzene 5'-phosphate synthase, which is involved in the biosynthesis of the 'archaeal' C(1)-carrier, tetrahydromethanopterin, which is also found in methylotrophs. This study demonstrates that relatively large DNA fragments from uncultivated organisms can be readily isolated using DNA-SIP, and cloned into a vector for metagenomic analysis.  相似文献   

20.
The effect of different amino acid supplements to the basal medium on poly(3-hydroxybutyrate) (PHB) accumulation by recombinant pha Sa + Escherichia coli (ATCC: PTA-1579) harbouring the poly(3-hydroxybutyrate)-synthesizing genes from Streptomyces aureofaciens NRRL 2209 was studied. With the exception of glycine and valine, all other amino acid supplements brought about enhancement of PHB accumulation. In particular, cysteine, isoleucine or methionine supplementation increased PHB accumulation by 60, 45 and 61% respectively by the recombinant E. coli as compared with PHB accumulation by this organism in the basal medium. The effect of co-ordinated addition of assorted combinations of these three amino acids on PHB accumulation was studied using a 23 factorial design. The three-factor interaction analyses revealed that the effect of the three amino acids on PHB accumulation by the recombinant E. coli was in the order of cysteine > methionine > isoleucine. The defined medium supplemented with cysteine, methionine and isoleucine at the concentration of 150 mgl–1 each and glycerol as the carbon source was the optimum medium that resulted in the accumulation of about 52% PHB of cell dry weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号