首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
Rcs是肠杆菌科细菌中的一种复杂的双组分信号转导系统,能调节细菌荚膜异多糖酸合成,以及细菌鞭毛基因、抗酸性基因等的表达。Rcs不同于典型的双组分系统,其由3个蛋白构成,磷酸转移过程分3步进行。不同细菌中的Rcs功能有所区别,主要为调控细菌的毒力和应激。本文在简单介绍细菌双组分信号转导系统的基础上,重点对肠杆菌科细菌Rcs的组成、功能及磷酸转移机制进行综述。  相似文献   

2.
赵彤  苏雅  孟娇  陈晶瑜 《微生物学通报》2021,48(9):2972-2981
【背景】小肠结肠炎耶尔森菌(Yersinia enterocolitica)是重要的人畜共患食源性病原菌。由于其生存环境与传染性生活方式,小肠结肠炎耶尔森菌暴露在各种生存压力中,而胞膜压力应答能力对维持其环境耐受性和毒力发挥着重要作用。【目的】探究小肠结肠炎耶尔森菌在胞膜压力应答中的调节机制。【方法】通过使用多粘菌素B破坏小肠结肠炎耶尔森菌细胞膜的稳定性,并从生长能力、运动能力、生物被膜形成能力以及相关基因表达的变化探讨Rcs (Regulator of Capsule Synthesis)系统对多粘菌素B产生的胞膜压力的应答。【结果】多粘菌素B引起的细胞胞膜压力抑制了小肠结肠炎耶尔森菌的运动和生物被膜形成能力;而阻断Rcs信号途径后,小肠结肠炎耶尔森菌的运动和生物被膜形成能力有所恢复。对flhC、hmsS、hmsT等关键下游表型基因的表达水平的分析结果表明Rcs双组分系统对由多粘菌素B诱导的胞膜压力作出响应,通过感知胞膜胁迫向胞内传递信号,积极地调控细菌增强对抗菌肽的抗性。【结论】明确了Rcs双组分系统在响应多粘菌素B压力胁迫中的特异性调控作用,加深了对小肠结肠炎耶尔森菌环境应答机制...  相似文献   

3.
革兰氏阴性细菌的外膜由脂多糖、磷脂、外膜蛋白和脂蛋白等成分组成,是细菌抵御外界有害物质的首要物理屏障,与细菌致病性和耐药性密切相关.外膜各组分依赖特定的系统进行跨膜转运,包括脂多糖转运系统(lipopolysaccharide transport, Lpt)、脂质不对称维持系统(maintenance of lipid asymmetry, Mla)、β-桶状装配机器(β-barrel assembly machinery,Bam)以及脂蛋白定位系统(localization of lipoprotein,Lol).这些系统能够保证细菌外膜的完整与稳定,被视为维持细菌生命活动的"命门".因此,本文系统地综述革兰氏阴性细菌外膜主要成分的跨膜转运系统结构与功能,并对其未来研究方向进行展望,为新型靶向抗菌类药物研发提供新的思路.  相似文献   

4.
肺炎克雷伯菌(Klebsiella pneumoniae,KP)是临床上重要的条件致病菌,主要引起肺炎、泌尿系统疾病、肝脓肿以及菌血症等临床疾病。Rcs B是磷酸信号转导系统中的核心调控子,有证据证明Rcs B可调控部分肠杆菌毒力的表达。本研究利用基因芯片技术筛选出Rcs B调控的靶基因并进行生物信息学分析,同时实时荧光定量PCR技术验证基因芯片结果。通过基因芯片技术共筛选出223个差异基因,其中表达下调基因有132个,表达上调基因有91个。q RT-PCR实验显示,挑选的8个基因的q RT-PCR结果均与芯片结果相符。223个差异基因的COG分析表明Rcs B调控的靶基因主要影响能量的产生和转换,碳、氨基酸的转运和代谢以及细胞壁、外膜的生成等细胞途径。GO富集分析表明Rcs B调控的靶基因主要参与碳水化合物衍生物代谢,酶的催化活性,膜合成等生理生化过程。本研究通过全基因组芯片技术对肺炎克雷伯菌Rcs B的转录谱进行了探究,明确了Rcs B调控的靶基因的相关功能及其调控机制,为通过探究Rcs B的靶基因来进一步深入了解Rcs磷酸信号转导系统对肺炎克雷伯菌毒力的影响奠定了基础。  相似文献   

5.
细菌双组分调节系统,或称之为双组分信号转导系统,是细菌感应外界多变环境,维持自身存活和生长繁衍的重要感应系统.在这些调节系统中,最早发现于枯草芽孢杆菌的VicRK(YycFG)系统因与细胞存活密切相关而倍受关注.该系统存在于少数低G+C含量的革兰氏阳性菌中,包括金黄色葡萄球菌和肺炎链球菌等致病菌,高度保守.许多证据显示,VicRK(YycFG)具有调控细胞壁合成与代谢、胞膜完整、细胞分裂、脂类代谢、多糖合成与被膜形成以及细菌毒力等多种功能,参与细胞的生长、分裂与感染.该系统异常可导致细菌生活力严重下降,甚至死亡,因而成为防治该类病原菌的重要靶标.  相似文献   

6.
细菌非编码小RNA(small non-coding RNA,sRNA)是一类长度在50-200个核苷酸,不编码蛋白质的RNA.它们通过碱基配对识别靶标mRNA,在转录后水平调节基因的表达,是细菌代谢、毒力和适应环境压力的重要调节因子.近年来,随着生物信息学和RNA组学技术应用于细菌sRNA的筛选,sRNA已被证实存在于大肠埃希杆菌(Escherichia coli),铜绿假单胞菌(Pseudomonas aeruginosa)、霍乱弧菌(Vibrio cholerae)等细菌中,是细菌基因调控中新的调节因子.本文对细菌中非编码小RNA的筛选和鉴定技术作一个简要论述.  相似文献   

7.
细菌的群体行为调控机制-Quorum sensing   总被引:8,自引:0,他引:8  
群体效应(Quorum sensing)是近来日益受到广泛关注的一种细菌群体行为调控机制,很多细菌有这种能力,即分泌一种或多种自诱导剂(Autoinducer),细菌通过感应这些自诱导剂来判断菌群密度和周围环境变化,当菌群数达到一定的阀值(quorum,菌落或集落数)后,启动相应一系列基因的调节表达,以调节菌体的群体行为。不同类型的细菌具有不同的群体效应调节系统,很多细菌分泌同一种诱导剂,以此调控不同种类细菌间的作用行为。群体效应系统在自诱导剂与受体之间存在专一性,同时又在调节基因和信号传递系统中体现出多样性和复杂性。由于不少人或植物的病原菌的致病机制等受群体效应的调控,该机制已成为医学等领域的研究热点。  相似文献   

8.
荚膜异多糖酸合成调节子(regulator of colanic acid capsule synthesis,Rcs)对大肠埃希菌适应外环境压力具有重要调控功能,但其在志贺菌中的功能尚未见报道。为探索外环境压力对福氏志贺菌Rcs编码基因rcs转录水平的影响,本研究采用核苷酸序列比对及蛋白结构域预测等生物信息学方法分析福氏志贺菌的Rcs编码基因簇rcsBDC,利用实时定量聚合酶链反应(quantitative real-time polymerase chain reaction,qRT-PCR),对该菌不同生长时期的rcsB、rcsD、rcsC基因转录水平进行分析,并检测在不同pH值培养基、渗透压条件下的基因转录水平。结果显示,福氏志贺菌rcsBDC在培养5~6 h(对数中期)时转录水平较高,8~10 h(稳定期)时转录水平较低(P<0.001);10 h时,rcsB和rcsD在酸性、渗透压条件下的转录水平均显著高于正常条件下的转录水平(P<0.05)。结果提示,外环境刺激可提高福氏志贺菌在稳定期的rcsB和rcsD转录水平,为志贺菌适应胃肠道酸性、渗透压环境的机制研究提供了一定理论基础。  相似文献   

9.
细菌抗氧化系统-oxyR调节子研究进展   总被引:3,自引:1,他引:3  
细菌抗氧化系统是细菌抵抗呼吸作用及环境因素导致的氧化损伤的一套防卫系统.oxyR调节子是最早发现的具有抗氧化作用的系统之一,由OxyR调节蛋白的编码基因oxyR及其调控的基因和操纵子所构成.oxyR调节子参与了细菌的抗氧化作用、抑制自发突变、致病性、铁代谢及外膜蛋白相变等多种生理代谢作用,这些发现促进了该调节子在细菌耐药性以及致突变物质筛查等方面的研究应用.作者主要从细菌oxyR调节子的结构组成、参与的生理代谢作用、OxyR调控转录的分子机制及影响因素等方面结合最新研究成果展开了介绍,以期对开展细菌抗药性研究及致突变物质的筛查等提供参考.  相似文献   

10.
【目的】双组分系统Rcs感受外界环境变化,并调控细菌的适应性及生存等。本文探讨Rcs双组分系统传感器激酶RcsC对禽致病性大肠杆菌(avian pathogenic Escherichia coli,APEC)相关生物学特性及致病性的影响。【方法】采用Red同源重组的方法构建rcsC基因缺失株,并利用互补质粒构建互补株,然后比较野生株、基因缺失株与互补株的生长特性、运动性、生物被膜、凝集沉淀能力、致病力及毒力基因转录水平的差异。【结果】rcsC基因缺失不影响APEC的生长速度,然而,缺失RcsC导致APEC的运动能力升高、生物被膜形成能力降低和凝集能力增强。凝集试验结果显示rcsC基因有助于APEC的凝集沉降。细胞黏附入侵结果表明,rcsC在APEC侵袭DF-1细胞过程中发挥作用,而对黏附能力无影响。动物感染试验结果表明rcsC基因缺失能显著降低APEC的毒力。荧光定量PCR检测结果表明,rcsC基因缺失株中ompA、aatA、fyuA和luxS基因的转录水平均显著降低,而fimC和tsh基因的转录水平显著升高。【结论】RcsC参与调控APEC的运动性、生物被膜形成、凝集沉降和致病力。  相似文献   

11.
12.
Production of plant cell wall degrading enzymes, the major virulence factors of soft-rot Pectobacterium species, is controlled by many regulatory factors. Pectobacterium carotovorum ssp. carotovorum SCC3193 encodes an Rcs phosphorelay system that involves two sensor kinases, RcsC(Pcc) and RcsD(Pcc), and a response regulator RcsB(Pcc) as key components of this system, and an additional small lipoprotein RcsF(Pcc). This study indicates that inactivation of rcsC(Pcc), rcsD(Pcc) and rcsB(Pcc) enhances production of virulence factors with the highest effect detected for rcsB(Pcc). Interestingly, mutation of rcsF(Pcc) has no effect on virulence factors synthesis. These results suggest that in SCC3193 a parallel phosphorylation mechanism may activate the RcsB(Pcc) response regulator, which acts as a repressor suppressing the plant cell wall degrading enzyme production. Enhanced production of virulence factors in Rcs mutants is more pronounced when bacteria are growing in the absence of plant signal components.  相似文献   

13.
14.
15.
The bacterial Rcs phosphorelay is a stress-induced defense mechanism that controls the expression of numerous genes, including those for capsular polysaccharides, motility, and virulence factors. It is a complex multicomponent system that includes the histidine kinase (RcsC) and the response regulator (RcsB) and also auxiliary proteins such as RcsF. RcsF is an outer membrane lipoprotein that transmits signals from the cell surface to RcsC. The physiological signals that activate RcsF and how RcsF interacts with RcsC remain unknown. Here, we report the three-dimensional structure of RcsF. The fold of the protein is characterized by the presence of a central 4-stranded β sheet, which is conserved in several other proteins, including the copper-binding domain of the amyloid precursor protein. RcsF, which contains four conserved cysteine residues, presents two nonconsecutive disulfides between Cys(74) and Cys(118) and between Cys(109) and Cys(124), respectively. These two disulfides are not functionally equivalent; the Cys(109)-Cys(124) disulfide is particularly important for the assembly of an active RcsF. Moreover, we show that formation of the nonconsecutive disulfides of RcsF depends on the periplasmic disulfide isomerase DsbC. We trapped RcsF in a mixed disulfide complex with DsbC, and we show that deletion of dsbC prevents the activation of the Rcs phosphorelay by signals that function through RcsF. The three-dimensional structure of RcsF provides the structural basis to understand how this protein triggers the Rcs signaling cascade.  相似文献   

16.
The Rcs signal transduction system of Escherichia coli regulating capsular polysaccharide synthesis (cps) genes is activated by overexpression of the djlA gene encoding a cytoplasmic membrane-anchored DnaJ-like protein. However, by monitoring the expression of a cpsB'-lac fusion in pgsA- and mdoH-null mutants in which the Rcs system is activated, we found that the Rcs activity was further increased by deletion of djlA and decreased by low-level extrachromosomal expression of djlA. Furthermore, deletion of djlA in a wild-type strain led to small but significant increase of the basal-level activity of the Rcs system. These results demonstrate that DjlA functions as a negative regulator of the Rcs system unless abnormally overproduced.  相似文献   

17.
The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.  相似文献   

18.
Outer membrane vesicles (OMVs) have been identified in a wide range of bacteria, yet little is known of their biogenesis. It has been proposed that OMVs can act as long-range toxin delivery vectors and as a novel stress response. We have found that the formation of OMVs in the gram-negative opportunistic pathogen Serratia marcescens is thermoregulated, with a significant amount of OMVs produced at 22 or 30°C and negligible quantities formed at 37°C under laboratory conditions. Inactivation of the synthesis of the enterobacterial common antigen (ECA) resulted in a hypervesiculation phenotype, supporting the hypothesis that OMVs are produced in response to stress. We demonstrate that the phenotype can be reversed to wild-type (WT) levels upon the loss of the Rcs phosphorelay response regulator RcsB, but not RcsA, suggesting a role for the Rcs phosphorelay in the production of OMVs. MS fingerprinting of the OMVs provided evidence of cargo selection within wild-type cells, suggesting a possible role for Serratia OMVs in toxin delivery. In addition, OMV-associated cargo proved toxic upon injection into the haemocoel of Galleria mellonella larvae. These experiments demonstrate that OMVs are the result of a regulated process in Serratia and suggest that OMVs could play a role in virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号