首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 55 毫秒
1.
以自然状况下生长良好的耐旱树种刺槐(Robinia pseudoacacia L.)、元宝枫(Acer truncatum Bge)、沙棘(Hippophae rhamnoides L.)、白榆(Ulmus pumila L.)、油松(Pinus tabulaeformis Carr.)、白皮松(Pinus bungeana Zucc.ex Endl.)及中生树种女贞(Ligustrum lucidum Ait.)、柳树(Salix matsudana Koidz.f.pendula Schneid.)为研究对象,用压力室法测定木质部水势,用冲洗法测定木质部栓塞程度,研究不同生长季节木质部栓塞与水势间的火系。结果表明:针叶树油松、白皮松在各个季节水势均较高,水势变化幅度较小,木质部不易发生栓塞,这与其木质部由管胞构成,对木质部栓塞不敏感,在干旱时采用高水势延迟脱水的耐旱策略有关。阔叶树刺槐、元宝枫、沙棘、白榆、女贞和柳树的木质部栓塞现象是其在每天正常生长过程中不可避免的“平常事件”,是它们适应干旱的一种方式。它们的木质部栓塞程度与水势表现出了相反的变化趋势,即同一树种在同一季节内水势值越低,木质部栓塞程度越大,但在不同树种及同一树种的不同季节不存在这种关系。由此可见,植物木质部栓塞对水势的敏感程度(即木质部栓塞脆弱性)主要由树种的木质部结构决定,同时受到树种特性、树木生长发育时期、外界环境因子的影响,木质部栓塞的脆弱性也具有季节变化特征。  相似文献   

2.
王婷  郭雯  潘志立  陈芳  杨石建 《应用生态学报》2020,31(11):3895-3905
气候变化引发干旱频度和强度的变化影响植物的生长发育和生态适应。干旱胁迫会引起木质部栓塞并造成水力失效,而如何准确量化木质部抗栓塞的能力对研究植物对干旱的响应过程尤为重要。通常可通过脆弱性曲线量化木质部抗栓塞的能力。目前已经研发出构建木质部栓塞脆弱性曲线的多种方法,但不同方法往往产生不一致的结果。深入理解这些方法的设计原理并在实际应用时比较各方法的异同,对合理解释相关文献数据及准确选择干旱预测模型等尤为重要。本文阐述了自然干燥法、离心法、注气法、声学测定法、同步加速器与X射线显微断层扫描法、光学可视化法及抽气法7种测定木质部栓塞脆弱性的方法,并总结了近年来各测定方法在具体研究中的运用情况及存在的争议。最后,对未来研究测定木质部栓塞脆弱性与实际运用相关方法的选择等提出了展望。  相似文献   

3.
以自然状况下生长良好的耐旱树种刺槐(Robinia pseudoacacia L.)、元宝枫(Acer truncatum Bge.)、沙棘(Hippophae rhamnoides L.)、白榆(Ulmus pumila L.)、油松(Pinus tabulaeformis Carr.)、白皮松(Pinus bungeana Zucc.ex Endl.)及中生树种女贞(Ligustrum lucidum Ait.)、柳树(Salix matsudana Koidz. f. pendula Schneid.)为研究对象,用压力室法测定木质部水势,用冲洗法测定木质部栓塞程度,研究不同生长季节木质部栓塞与水势间的关系.结果表明针叶树油松、白皮松在各季节水势均较高,水势变化幅度较小,木质部不易发生栓塞,这与其木质部由管胞构成,对木质部栓塞不敏感,在干旱时采用高水势延迟脱水的耐旱策略有关.阔叶树刺槐、元宝枫、沙棘、白榆、女贞和柳树的木质部栓塞现象是其在每天正常生长过程中不可避免的 "平常事件",是它们适应干旱的一种方式.它们的木质部栓塞程度与水势表现出了相反的变化趋势,即同一树种在同一季节内水势值越低,木质部栓塞程度越大,但在不同树种及同一树种的不同季节不存在这种关系.由此可见,植物木质部栓塞对水势的敏感程度(即木质部栓塞脆弱性)主要由树种的木质部结构决定,同时受到树种特性、树木生长发育时期、外界环境因子的影响,木质部栓塞的脆弱性也具有季节变化特征.  相似文献   

4.
水是植物生存与生长的基础条件, 水分有效性影响植物木质部解剖结构、水力功能, 使之形成特定的适应特征。因此, 对比自然与人工生境中同一植物的水力功能与解剖结构差异, 有助于理解植物对水分环境的适应机理。该研究以湿润区三角槭(Acer buergerianum)、青冈(Cyclobalanopsis glauca)和女贞(Ligustrum lucidum)为研究材料, 对比分析了自然和人工生境中各物种的栓塞抗性(导水率损失50%时的水势(P50))、输水效率(比导率(Ks))和解剖结构(导管直径(D)、导管壁厚(T)、导管密度(N)、木质部密度(WD)、厚度跨度比(t/b)2)特征, 探究了同生境种内与跨生境、跨物种水平的效率-安全权衡关系, 量化分析了水力功能与解剖结构的关系。结果发现: 1) 3种被子植物在自然生境中Ks更大, P50更小, 与其更大的D、更小的(t/b)2有关。2)同生境种内KsP50不存在权衡。3)功能性状和解剖结构相关分析表明: 同生境种内DP50不存在显著的相关关系; 除自然生境女贞外, T、(t/b)2均与P50正相关。相对于人工生境, 在水分有效性低或无额外浇灌的自然生境中, 植物通过增大导管直径显著提高其输水效率, 从而避免水势下降、降低潜在栓塞风险。  相似文献   

5.
7种木本植物根和小枝木质部栓塞的脆弱性   总被引:7,自引:0,他引:7  
安锋  张硕新 《生态学报》2005,25(8):1928-1933
用脆弱曲线表示的植物木质部栓塞脆弱性反映了植物木质部栓塞程度与其水势间的关系。众多学者的研究结果表明,脆弱曲线能够提供有关植物的许多生理生态信息,与植物的木质部结构、部位、分布、抗寒、抗旱性等存在一定关系,但各国学者利用不同材料研究得出的结果各异,为了研究木质部栓塞的这种差异是否由于树木对环境适应性不同引起,选取西北农林科技大学西林校区内自然状况下生长良好的5个耐旱树种:刺槐(RobiniapseudoacaciaL.)、元宝枫(AcertruncatumBge.)(低水势忍耐脱水耐旱树种)、白榆(UlmuspumilaL.)(亚低水势忍耐脱水耐旱树种)、油松(PinustabulaeformisCarr.)、白皮松(PinusbungeanaZucc.ex.Endl.)(高水势延迟脱水耐旱树种),及中生的女贞(LigustrumlucidumAit.)和柳树(SalixmatsudanaKoidz.f.pendulaSchneid.)为研究对象,绘制了它们根和小枝的木质部栓塞脆弱曲线,探讨了中生树种和不同耐旱类型树种根和小枝木质部栓塞脆弱性的差异。结果表明:根和小枝的栓塞脆弱性主要由木质部结构决定,栓塞脆弱性顺序基本一致,小枝容易发生木质部栓塞的,其根也较容易发生栓塞;同一树种根和小枝的木质部栓塞脆弱性与植物的耐旱性有关,与树种的耐旱策略无关;一般是中生树种的栓塞脆弱性:小枝>根;耐旱树种的栓塞脆弱性:根>小枝。  相似文献   

6.
生境异质性是影响植物生长发育的重要因素。植物木质部水力系统是土壤-植物-大气连续体的主要通路,直接影响植物的基本行为和功能,同时也反映了植物对环境变化的适应性。为对比天目山3种裸子植物枝条木质部水力功能、机械和解剖结构性状在不同生境(自然生境与人工生境)的差异,揭示裸子植物对不同生境的适应机制,该研究以金钱松(Pseudolarix amabilis)、杉木(Cunninghamia lanceolata)和雪松(Cedrus deodara)为研究对象,测定枝木质部导水率、栓塞抗性(导水率损失50%时的水势)、机械以及解剖结构性状。结果发现:1)人工生境植株比自然生境植株水力效率弱,但栓塞抗性强。2)自然生境雪松木质部导水系统存在效率-安全权衡;不论自然还是人工生境杉木、金钱松木质部导水系统均无效率-安全权衡。3)人工生境雪松和金钱松木质部存在机械-安全权衡。相比人工生境,土壤水分有效性低的自然生境中,植物采用增大纹孔膜直径来提高水力效率,此外,还可通过增加木材密度、扩大管胞直径来避免栓塞带来的威胁。  相似文献   

7.
植物木质部导管栓塞   总被引:3,自引:0,他引:3  
植物木质部栓塞直接影响植物体内的水分传输,文章对近年来植物木质部导管栓塞的时空分布规律、栓塞修复的微观过程,以及根压与作物木质部导管栓塞的关系研究进展作了概述。  相似文献   

8.
木本植物木质部栓塞脆弱性研究新进展   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部空穴化和栓塞是木本植物在干旱等条件下遭受水分胁迫时产生的木质部输水功能障碍, 在全球气候变化的大背景下, 栓塞脆弱性对干旱响应的研究已成为热点和重要内容。近年来有关木质部栓塞脆弱性与植物输水结构和耐旱性的关系已有大量研究并取得一定成果, 但是, 不同学者在不同地区对不同材料的研究结果存在很大不同。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结, 主要涉及木质部栓塞脆弱性(P50)及脆弱曲线的建立方法、木质部栓塞脆弱性与木质部结构(导管直径、导管长度、纹孔膜、木质部密度、纤维及纤维管胞)间的关系和木质部栓塞脆弱性与耐旱性的关系, 并对未来工作进行展望, 提出在未来的工作中应对同一树种使用Cochard Cavitron离心机法、Sperry离心机技术与传统方法建立的脆弱曲线进行比较验证、计算P50值、分析植物个体器官水平差异(根、茎、叶)、测定树种生理生态指标, 探索植物栓塞脆弱性与输水结构和耐旱性的关系, 从而评估不同类型植物在未来气候变化下的耐旱能力。  相似文献   

9.
木本植物木质部的冻融栓塞应对研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
冻融栓塞在中高纬度地区木本植物中普遍存在。抗冻融栓塞能力对在寒冷环境中木本植物的生长和安全越冬十分关键, 这直接决定植物分布范围。冻融栓塞是由于冰中气体溶解度低, 木质部水分在低温下冷冻, 使之前水中溶解的气体逸出到导管中, 随后木质部中的冰融化又使气泡扩张而引发的栓塞现象。木质部解剖结构的差异会影响植物的抗冻融栓塞能力, 植物还可以通过调节木质部正压、代谢耗能等方式主动修复冻融栓塞, 也可通过增加树液溶质含量等逃避冷冻, 以减少低温损伤。然而, 与干旱栓塞相比, 目前对木质部冻融栓塞的形成以及植物响应和调节机制的理解不足。为此, 该文首先综述了木质部冻融栓塞的形成机制和植物的逃避、忍耐、修复等3种冻融栓塞的应对策略, 然后总结了木质部抗低温胁迫能力的生理表现、影响因子和评价指标, 并在此基础上讨论了低温抗性、干旱抗性和水力效率之间的多元权衡关系, 最后提出今后该领域中的5个优先研究问题: (1)不同植物冰冻的最低温度阈值; (2)是否存在应对低温胁迫的水力脆弱性分割机制; (3)冻融栓塞修复与代谢消耗的关系; (4)低温抗性、干旱抗性和水力效率之间的权衡关系; (5)抗冻融栓塞性状是否能够纳入经济性状谱系。  相似文献   

10.
三个耐旱树种木质部栓塞化的脆弱性及其恢复能力   总被引:12,自引:2,他引:12  
植物在长期适应赖以生存的自然环境中 ,形成了一套最适宜自身生长发育的生理生态行为 ,采取各种方式来抵御或忍耐水分胁迫的影响。如通过具有深广而茂密的根系格局来保持水分吸收 ,通过气孔调节、角质层障碍作用和小的叶蒸发表面来减少水分散失 ,通过渗透调节和增加组织弹性来保持膨压 ,通过增强原生质耐脱水能力来免受伤害或少受伤害等等。植物遭受干旱危害时 ,首先出现表型反应的多是植物的叶片 ,因此 ,研究植物的耐旱机理多从叶入手 ,对根系类型、分布及根茎比在植物耐旱性方面也有不少报道[1,2 ],而对木质部在干旱适应性反应方面的研究…  相似文献   

11.
Five evergreen subtropical tree species growing under identical environmental conditions were investigated to establish which hydraulic properties are genotypically rigid and which show phenotypic plasticity. Maximum xylem-specific conductivity ( k s) correlated well with the anatomical characteristics (conduit diameter and density) for the four angiosperms Tecomaria capensis , Trichilia dregeana , Cinnamomum camphora and Barringtonia racemosa ; the anatomy of the gymnosperm Podocarpus latifolius was not assessed. Huber values (functional xylem cross-sectional area : leaf area) varied inversely with k s among species. Maximum leaf-specific conductivity was similar in the five unrelated species. Vulnerability of xylem to cavitation differed between species, as did the relationship between transpiration and water potential. Models of these parameters and isolated midday readings confirm that these trees operate at similar maximum leaf-specific conductivity ( k l) values. The data are consistent with the hypothesis that conductivity characteristics ( k l, k s) are influenced by environment, whereas vulnerability to cavitation is genetically determined.  相似文献   

12.
13.
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought‐induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re‐watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re‐watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re‐watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non‐hydraulic factors influenced stomatal behaviour post drought.  相似文献   

14.
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought‐induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (?19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco‐physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions.  相似文献   

15.
Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min?1 to 0·08 °C min?1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.  相似文献   

16.
Vulnerability curves using the 'Cavitron' centrifuge rotor yield anomalous results when vessels extend from the end of the stem segment to the centre ('open-to-centre' vessels). Curves showing a decline in conductivity at modest xylem pressures ('r' shaped) have been attributed to this artefact. We determined whether the original centrifugal method with its different rotor is influenced by open-to-centre vessels. Increasing the proportion of open-to-centre vessels by shortening stems had no substantial effect in four species. Nor was there more embolism at the segment end versus centre as seen in the Cavitron. The dehydration method yielded an 'r' shaped curve in Quercus gambelii that was similar to centrifuged stems with 86% open-to-centre vessels. Both 'r' and 's' (sigmoidal) curves from Cercocarpus intricatus were consistent with each other, differing only in whether native embolism had been removed. An 'r' shaped centrifuge curve in Olea europaea was indistinguishable from the loss of conductivity caused by forcing air directly across vessel end-walls. We conclude that centrifuge curves on long-vesselled material are not always prone to the open vessel artefact when the original rotor design is used, and 'r' shaped curves are not necessarily artefacts. Nevertheless, confirming curves with native embolism and dehydration data is recommended.  相似文献   

17.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号