首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
RNA binding proteins (RBPs) and RNA interaction is an emerging topic in molecular biology. Many reports showed that such interactions contribute to many cellular processes as well as disease development. Several standard in vitro and in vivo methods were developed to fulfill the needs of this RBP–RNA interaction study to explore their biological functions. However, these methods have their limitations in terms of throughput. In this review, we emphasize two important high throughput methods to studying RBP–RNA interactions, affinity purification and protein microarray. These methods have recently become robust techniques regarding their efficiency in systematically analyzing RBP–RNA interactions. Here, we provide technique overviews, strategies and applications of these methods during biological research. Although these technologies are just beginning to be explored, they will be most important methods in this study.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non‐coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6A is the most common. The function of m6A modifications is mainly regulated by 3 types of proteins: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A‐binding proteins (readers). In this review, we focus on RNA m6A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.  相似文献   

16.
Numerous technologies based on utilizing fluorescent proteins have been developed for biological research, and fluorescence complementation (FC) is a recent application for visualization of molecular events in living cells and organisms. Currently, ten fluorescent proteins have been demonstrated to support FC. Over the past five years, FC-based technologies have been developed to visualize a variety of molecular events, such as protein-protein interactions, post-translational modifications, protein folding, conformational changes, RNA-protein interactions, mRNA localization and DNA hybridization. In addition, FC has also been used for drug discovery. These applications are providing fascinating insights into many biological processes. Here, we review the principles and applications of FC technologies, discuss their current challenges and examine prospects for future advances.  相似文献   

17.
RNA–protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins(RBPs) remains one of the most fundamental and important challenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we compare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audience and also urge for the development of new methods to study RNA RBP interactions.  相似文献   

18.
杨莹  陈宇晟  孙宝发  杨运桂 《遗传》2018,40(11):964-976
表观遗传学修饰包括DNA、RNA和蛋白质的化学修饰,基于非序列改变所致基因表达和功能水平变化。近年来,在DNA和蛋白质修饰基础上,可逆RNA甲基化修饰研究引领了第3次表观遗传学修饰研究的浪潮。RNA存在100余种化学修饰,甲基化是最主要的修饰形式。鉴定RNA甲基化修饰酶及研发其转录组水平高通量检测技术,是揭示RNA化学修饰调控基因表达和功能规律的基础。本文主要总结了近年来本课题组与合作团队及国内外同行在RNA甲基化表观转录组学研究中取得的主要前沿进展,包括发现了RNA去甲基酶、甲基转移酶和结合蛋白,揭示RNA甲基化修饰调控RNA加工代谢,及其调控正常生理和异常病理等重要生命进程。这些系列研究成果证明RNA甲基化修饰类似于DNA甲基化,具有可逆性,拓展了RNA甲基化表观转录组学研究新领域,完善了中心法则表观遗传学规律。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号