首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The virulence evolution of multiple infections of parasites from the same species has been modeled widely in evolution theory. However, experimental studies on this topic remain scarce, particularly regarding multiple infections by different parasite species. Here, we characterized the virulence and community dynamics of fungal pathogens on the invasive plant Ageratina adenophora to verify the predictions made by the model. We observed that A. adenophora was highly susceptible to diverse foliar pathogens with mixed vertical and horizontal transmission within leaf spots. The transmission mode mainly determined the pathogen community structure at the leaf spot level. Over time, the pathogen community within a leaf spot showed decreased Shannon diversity; moreover, the vertically transmitted pathogens exhibited decreased virulence to the host A. adenophora, but the horizontally transmitted pathogens exhibited increased virulence to the host. Our results demonstrate that the predictions of classical models for the virulence evolution of multiple infections are still valid in a complex realistic environment and highlight the impact of transmission mode on disease epidemics of foliar fungal pathogens. We also propose that seedborne fungi play an important role in structuring the foliar pathogen community from multiple infections within a leaf spot.  相似文献   

2.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

3.
Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber–R. irregularis symbioses and non‐mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build‐up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.  相似文献   

4.
Recent studies have detected phylogenetic signals in pathogen–host networks for both soil‐borne and leaf‐infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next‐generation high‐throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK, rbcL, atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host–fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant–fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant–fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.  相似文献   

5.
《农业工程》2020,40(5):383-387
The adverse effects of chemical synthetic fungicides on agricultural fields and the environment are driving a need to search for safer and less environmentally harmful plant protectants to move toward more sustainable development of agriculture. The endophytic fungal community associated with the medicinal plant Stephania dielsiana, and its potential for providing antimicrobial secondary metabolites were investigated. A total of 26 isolates of endophytic fungi were obtained, and 21 isolates were identified and classified into eight different genera, including Briansuttonomyces, Glomerella, Pleosporales, Diaporthe, Phoma, Penicillium, Periconia and Colletotrichum, and the most frequent endophytic species obtained were Diaporthe phaseolorum, Penicillium sp., Periconia igniari and Colletotrichum sp. The ethyl acetate (EtOAc) extract of the endophytic fungus Diaporthe phaseolorum Stdif6 displayed the most significant antifungal activity against all tested phytopathogens, with EC50 values ranging from 0.0138 to 0.3103 mg/mL. While the EtOAc extract of the endophytic fungus Penicillium sp. Stdif9 exhibited greater potential for antibacterial activity, with the minimum inhibitory concentration (MIC) values against seven bacteria ranging from 1.25 to 6 mg/mL. The remarkable antimicrobial activity of fungal endophytes suggests that fungal endophytes harbored inside the root tubers of S. dielsiana hold great promise as biocontrol agents against a broad spectrum of economically significant pathogens.  相似文献   

6.
India is the highest producer of Cicer arietinum, however the crop is susceptible to plant fungal diseases i.e. Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani. For a sustainable alternative, anti-plant pathogenic efficacy of fungal endophytes were investigated. Endophytic fungi of Mentha piperita were investigated for biodiversity, biocontrol potential towards these phytopathogens and their metabolite profiling. Sixty three fungal isolates were recovered from peppermints sampled in different seasons from distinct regions of India. Endophytic fungi were identified by ITS-rDNA sequence process. PCA divulged seasonal variability with exclusive presence of Colletotrichum sp., D. phaseolorum, Alternaria sp., Hypocrea sp. and R. oryzae in second sampling season. Shannon diversity index (H′) was found to be highest in leaf (1.253) from Mukteshwar. Acremonium sp. (MPM-2.1) extract exhibited anti-plant pathogenic activity with < 1 mg/ml IC50 value towards phytopathogens. GC-MS chromatography of potent biocontrol fungus Acremonium sp. (MPHSS-2.1) confirmed presence of antifungal compounds 1-heptacosanol and 1-nonadecane.  相似文献   

7.
外来入侵植物通常要和当地的生物发生相互关系并对当地生态系统产生影响。为表明叶内生真菌是否有利于紫茎泽兰(Eupatorium adenophorum)的入侵力,首次调查了其叶内生真菌多样性。利用过夜冰冻组织法和常规的麦芽汁琼脂平板培养法,分别于3、6月份从昆明西山、金殿种群分离得到312个菌株,根据其ITS基因差异,分为77个可操作分类单元(OTUs),系统发育地位分布在Agaricomycetes、Dothideomycetes、Sordariomycetes和 Pezizomycetes 4个纲。在低阶分类上这些真菌可分为19个属,优势属为链格孢属(Alternaria)(25.09%)和炭疽菌属(Colletotrichum)(10.80%)。有2.09%的菌株属于未知真菌。相比较,6月份的紫茎泽兰种群比3月份具有较高的内生真菌多样性。结果表明,入侵植物紫茎泽兰叶内生真菌非常丰富,这些真菌是否对紫茎泽兰的入侵力具有影响值得今后深入研究。  相似文献   

8.
Endophytes may gradually accumulate in the new geographic range of a non-native plant, just as pathogens do. To test this hypothesis, the dynamics of colonization and diversity of foliar fungal endophytes of non-native Ageratina adenophora were investigated. Previous reports showed that the time since the initial introduction (1930s) of A. adenophora into China varied among populations. Endophytes were sampled in three provinces of Southwest China in 21 sites that varied from 20 to 70 years since the introduction of A. adenophora from its native Central America. Endophyte isolation frequencies varied from 1.87 % to 60.23 % overall in a total of 4,032 leaf fragments. Based on ITS sequence variations, 463 fungal endophytes were distinguished as 112 operational taxonomic units (OTUs) belonging to the Sordariomycetes (77 OTUs, 373 isolates), Dothideomycetes (18 OTUs, 38 isolates), and Agaricomycetes (17 OTUs, 52 strains) classes. Colletotrichum (28.51 %), Nemania (14.90 %), Phomopsis (13.17 %), and Xylaria (4.97 %) were the most abundant genera. Both endophyte diversity and overall isolation frequency increased with time since introduction. The genetic differentiation of the fungus Colletotrichum gloeosporioides indicated that the dispersal of endophytes was likely affected by a combination of geographic factors and the invasion history of the host A. adenophora.  相似文献   

9.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

10.
In a greenhouse experiment using Plantago lanceolata, plants grown with different arbuscular mycorrhizal (AM) fungal species differed in constitutive levels of chemical defense depending on the species of AM fungi with which they were associated. AM fungal inoculation also modified the induced chemical response following herbivory by the specialist lepidopoteran herbivore Junonia coenia, and fungal species varied in how they affected induced responses. On average, inoculation with AM fungi substantially reduced the induced chemical response as compared with sterile controls, and inoculation with a mixture of AM fungi suppressed the induced response of P. lanceolata to herbivory. These results suggest that AM fungi can exert controlling influence over plant defensive phenotypes, and a portion of the substantial variation among experimental tests of induced chemical responses may be attributable to AM fungi.  相似文献   

11.
Calotropis procera has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its fungal endophytes. This study analyzed, for the first time, the community of endophytic fungi of C. procera outside its region of origin. A total of 156 fungal isolates distributed across 19 taxa were obtained from 468 fragments of C. procera leaves at different stages of maturation. The rate of endophyte colonization increased with the leaf age/development. The dominant species of endophytic fungi of C. procera introduced in Northeast Brazil were different from those found in studies on the same species and other species of the same genus in native regions. The dominant endophyte was Phaeoramularia calotropidis (63.5 %), followed by Guignardia bidwellii (21.1 %). Six isolates of endophytic fungi showed antimicrobial activity against human pathogenic micro-organisms and one plant pathogenic fungus. The antibacterial activity was more intense than the antifungal activity. The endophytic Curvularia pallescens (URM 6048) stood out inhibited Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes, the plant pathogenic fungus Colletotrichum dematium. Ecological and biotechnological aspects of endophytic mycota are discussed.  相似文献   

12.
Abstract

Most of the plant pathogenic fungi produce a dark phenolic polymer called melanin. The high performance liquid chromatography (HPLC) analysis of the mycelial extract of Alternaria helianthi revealed an accumulation of scytalone and a shunt metabolite 2-hydroxyjuglone which confirms the production of dihydroxynapthalene type of melanin. The growth and melanin of A. helianthi increased when grown in host extract broth at 6.5 pH and a temperature beyond 30°C had an inhibitory effect on the pathogen. The production and type of melanin produced in Alternaria helianthi is reported for the first time.  相似文献   

13.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Abstract 1 Eucalypts are an important part of plantation forestry in Asia but, in south China, productivity is very low. This is due to infertile soils and lack of indigenous symbiotic mycorrhizal fungi. The genus Eucalyptus is unusual because it forms both arbuscular (AM) and ectomycorrhizal (ECM) associations. 2 Eucalyptus urophylla saplings were grown with and without AM (Glomus caledonium) and ECM (Laccaria laccata) fungi in a factorial design. Two experiments were performed: one to simulate nursery conditions and the other to simulate the early stages of plantation establishment. Plant growth was measured over 18 weeks and levels of insect attack were recorded. 3 The AM fungus reduced tree growth in the early stages, but the effect appeared to be transient. No effects of ECM were detected on tree growth, but the ectomycorrhiza reduced colonization by the arbuscular mycorrhiza. AM fungi appear to be rapid invaders of the root system, gradually being replaced by ECM. 4 Both fungal types affected levels of damage by insect herbivores. Most importantly, herbivory by the pest insects Anomala cupripes (Coleoptera) and Strepsicrates spp. (Lepidoptera) was decreased by ECM. 5 It is suggested that mycorrhizal effects on eucalypt insects may be determined by carbon allocation within the plant. Future studies of eucalypt mycorrhizas need to take into account the effects of the fungi on foliar‐feeding insects and also the effects of insect herbivory on mycorrhizal establishment.  相似文献   

15.
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co‐occurring native plants. Here, we used an invasive plant Mikania micrantha, a co‐occurring native plant Coix lacryma‐jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co‐occurring native plant. In a factorial setup, M. micrantha and C. lacryma‐jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co‐occurring native plant C. lacryma‐jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.  相似文献   

16.
The fungal species from rhizosphere and rhizoplane of perennial grasses of the Western Ghats of India were studied for their pathogenicity, antagonism in vitro, substrate and root colonization abilities, rhizosphere competence, growth in different soil pH and inoculum shelf-life. Out of 138 non-pathogenic fungal isolates tested, 85 were antagonistic in vitro to chilli anthracnose pathogen Colletotrichum capsici. Fifteen isolates with >60% inhibition zone to pathogen culture had saprophytic and root and rhizosphere colonization abilities. The sorghum grain inocula of test antagonistic fungi- Fusarium oxysporum, Chaetomium globosum and Trichoderma harzianum had the shelf-life of 90 days at 20?±?2?°C and required optimum soil pH of 6.5. The above fungal isolates when tested for biocontrol of anthracnose disease in greenhouse and field caused reduction in seedling mortality and decreased disease incidence and severity at various plant growth stages and significant reduction in chilli fruit and seed infection. The test antagonistic fungi promoted seedling and mature plant growth and increased fruit and seed yield. Populations of these antagonistic fungi were fairly high in chilli rhizosphere at harvest. The present study indicated that antagonistic fungi from grass rhizosphere and rhizoplane could be used to control anthracnose and promote plant growth, and increase yield of chilli in field.  相似文献   

17.
Colletotrichum capsici is an important fungal species that causes anthracnose in many genera of plants causing severe economic losses worldwide. A primer set was designed based on the sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a conventional PCR assay. The primer set (CcapF/CcapR) amplified a single product of 394 bp with DNA extracted from 20 Mexican isolates of C. capsici. The specificity of primers was confirmed by the absence of amplified product with DNA of four other Colletotrichum species and eleven different fungal genera. This primer set is capable of amplifying only C. capsici from different contaminated tissues or fungal structures, thereby facilitating rapid diagnoses as there is no need to isolate and cultivate the fungus in order to identify it. The sensitivity of detection with this PCR method was 10 pg of genomic DNA from the pathogen. This is the first report of a C. capsici-specific primer set. It allows rapid pathogen detection and provides growers with a powerful tool for a rational selection of fungicides to control anthracnose in different crops and in the post-harvest stage.  相似文献   

18.
Powdery mildew is a foliar disease caused by epiphytically growing obligate biotrophic ascomycete fungi. How powdery mildew colonization affects host resident microbial communities locally and systemically remains poorly explored. We performed powdery mildew (Golovinomyces orontii) infection experiments with Arabidopsis thaliana grown in either natural soil or a gnotobiotic system and studied the influence of pathogen invasion into standing natural multi-kingdom or synthetic bacterial communities (SynComs). We found that after infection of soil-grown plants, G. orontii outcompeted numerous resident leaf-associated fungi while fungal community structure in roots remained unaltered. We further detected a significant shift in foliar but not root-associated bacterial communities in this setup. Pre-colonization of germ-free A. thaliana leaves with a bacterial leaf-derived SynCom, followed by G. orontii invasion, induced an overall similar shift in the foliar bacterial microbiota and minor changes in the root-associated bacterial assemblage. However, a standing root-derived SynCom in root samples remained robust against foliar infection with G. orontii. Although pathogen growth was unaffected by the leaf SynCom, fungal infection caused a twofold increase in leaf bacterial load. Our findings indicate that G. orontii infection affects mainly microbial communities in local plant tissue, possibly driven by pathogen-induced changes in source-sink relationships and host immune status.  相似文献   

19.
Efficient RNA isolation is a prerequisite for gene expression studies and it has an increasingly important role in the study of plant–fungal pathogen interactions. However, RNA isolation is difficult in filamentous fungi. These organisms are notorious for their rigid cell walls and the presence of high levels of carbohydrates, excreted from the fungal cells during submerged growth, which interferes with the extraction procedures. Although many commercial kits are already available for RNA isolation, they do not provide, in most cases, enough amount of pure RNA to be used in upstream applications. In the present work, we propose an easy and efficient protocol for isolating total RNA from the filamentous fungus Mycosphaerella fijiensis, the most important foliar pathogen of Musa spp. varieties worldwide. In addition, we applied the proposed protocol to the isolation of total RNA from banana leaves infected with the pathogen. Our methodology was developed based on the SDS method with modifications including a carbohydrate precipitation step. The protocol resulted in high-quality total RNA, from fungal mycelium grown in PDB medium and infected banana leaves, suitable for further molecular studies. The proposed methodology is also applicable to the ascomycete fungus Passalora fulva (syn. Cladosporum fulvum). Aminael Sánchez-Rodríguez and Orelvis Portal contributed equally to the article.  相似文献   

20.
Tiunov AV  Scheu S 《Oecologia》2005,142(4):636-642
The functioning of the plant-mycorrhiza system depends on interactions with other organisms, including saprotrophic (ST) soil fungi. The interactions between mycorrhizal and ST fungi are likely affected by fungivorous soil animals, such as Collembola. In a two-factorial laboratory experiment lasting for 30 weeks we assessed the effects of an arbuscular mycorrhizal fungus (Glomus mosseae) and Collembola (Protaphorura fimata, Heteromurus nitidus and Folsomia candida) on the community composition of ST microfungi in soil planted with the invasive grass Cynodon dactylon. The presence of mycorrhiza substantially reduced total plant biomass and reduced N and P availability to the soil microflora, though these effects were less pronounced in the presence of Collembola. The density of Collembola was high (corresponding to about 2×105 individuals m–2) and was not affected by the presence of G. mosseae. In spite of the large amount of mycorrhizal mycelium in soil, it contributed little to Collembola nutrition. The presence of mycorrhiza strongly affected the community structure of ST soil fungi. In particular, mycorrhiza reduced the relative abundance of Trichoderma harzianum and Exophiala sp., but increased the abundance of Ramichloridium schulzeri and several sterile forms. However, the difference between fungal communities in mycorrhizal and non-mycorrhizal treatments was much more pronounced in the presence of Collembola. Presumably, the intense grazing by Collembola destabilized the ST fungal community, thereby making it more susceptible to the influence of G. mosseae. These results document for the first time that fungal feeding soil invertebrates can significantly affect the interactions between mycorrhizal fungi and ST soil microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号