首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strategy of the United Nations Decade on Ecosystem Restoration identifies three pathways for action for overcoming six global barriers thought to hamper upscaling. We evaluated 6,023 peer-reviewed and gray literature papers published over the last two decades to map the information landscape underlying the barriers and associated pathways for action across world regions, terrestrial ecosystem types, restorative interventions and their outcomes. Overall, the literature addressed more the financial and legislative barriers than the technical and research-related ones, supporting the view that social, economic and political factors hamper scaling up ecosystem restoration. Latin America, Africa, and North America were the most prominent regions in the literature, yet differed in the number of publications addressing each barrier. An overwhelming number of publications focused on forests (78%), while grasslands (6%), drylands (3%), and mangroves (2%) received less attention. Across the three pathways for action, the action lines on (1) promoting long-term ecosystem restoration actions and monitoring and (2) education on restoration were the most underrepresented in the literature. In general, restorative interventions assessed rendered positive outcomes except those of a political, legislative or financial nature which reported negative or inconclusive outcomes. Our indicative assessment reveals critical information gaps on barriers, pathways, and types of restorative interventions across world regions, particularly related to specific social issues such as education for ecosystem restoration. Finally, we call for refining “strength of evidence” assessment frameworks that can systematically appraise, synthesize and integrate information on traditional and practitioner knowledge as two essential components for improving decision-making in ecosystem restoration.  相似文献   

2.
Caquetá Department, in the Colombian Amazon, has a historical context of deforestation, education of poor quality, land tenure conflicts, and social violence. Thus, there is an urgent need to restore not only the ecosystem, but also the social fabric and the society–nature relationship. This article describes the process, impacts, obstacles, and lessons learned from a program of ecological restoration‐based education for local communities. During 2017, a group of 15 local people were selected and trained in ecological restoration to become, as we called them, “local scientists” (LS). After this educative process, these LS, together with researchers from social sciences and biology, developed an ecological restoration education program aimed to local peasants. The bioregional current of environmental education and significant learning theory were the educative theoretical frameworks used. The pedagogical contents were grouped into five main themes: (1) soils, (2) farm planning, (3) river basins, (4) monitoring, and (5) social organization. During 2018, between 8 and 70 peasants per community participated in the program. The last phase, carried out in 2019, consisted of the propagation of native forest species and outplantings by the program participants, to restore the landscape connectivity in a region considered to be high priority. Peasants built 71 nursery gardens on their farms with their own labor. They produced 400,000 seedlings of 21 native forest species, which were further planted on 277 farms over 550 ha. The implications of the pedagogical process of the program, the advances in restoration of degraded forests, and changes in society–nature relationships are discussed.  相似文献   

3.
Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco‐plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C.  相似文献   

4.
Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the United Kingdom, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Mean fluxes ranged from ?0.3 to 27.4 nmol CH4 m?2 s?1, with small emissions or low rates of net uptake in mineral soils (site means of ?0.3 to 0.7 nmol m?2 s?1) and much larger emissions from organic soils (site means of ?0.3 to 27.4 nmol m?2 s?1). Less than half of the observed variability in instantaneous fluxes could be explained by independent variables measured. The reasons for this include measurement error, stochastic processes and, probably most importantly, poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. When temporal variation was accounted for, and the fluxes averaged at larger spatial scales, simple models explained up to ca. 75% of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub‐set of explanatory variables. However, where plant species composition data were available, this provided the highest explanatory power. Linear and nonlinear models generally fitted the data equally well, with the exception that soil moisture required a power transformation. To estimate the impact of changes in peatland water table on CH4 emissions in the United Kingdom, an emission factor of +0.4 g CH4 m?2 yr?1 per cm increase in water table height was derived from the data.  相似文献   

5.
Ecological restoration of degraded ecosystems has emerged as a critical tool in the fight to reverse and ameliorate the current loss of biodiversity and ecosystem services. Approaches derived from different genetic disciplines are extending the theoretical and applied frameworks on which ecological restoration is based. We performed a search of scientific articles and identified 160 articles that employed a genetic approach within a restoration context to shed light on the links between genetics and restoration. These articles were then classified on whether they examined association between genetics and fitness or the application of genetics in demographic studies, and on the way the studies informed restoration practice. Although genetic research in restoration is rapidly growing, we found that studies could make better use of the extensive toolbox developed by applied fields in genetics. Overall, 41% of reviewed studies used genetic information to evaluate or monitor restoration, and 59% provided genetic information to guide prerestoration decision‐making processes. Reviewed studies suggest that restoration practitioners often overlook the importance of including genetic aspects within their restoration goals. Even though there is a genetic basis influencing the provision of ecosystem services, few studies explored this relationship. We provide a view of research gaps, future directions and challenges in the genetics of restoration.  相似文献   

6.
Despite numerous studies on the function of the avian dawn chorus, few studies have examined whether dawn singing may influence the singing of other species. Here, we built on our previous study which found male Brownish‐flanked Bush Warblers (Horornis fortipes) increase their dawn singing intensity after conspecific playback on the previous day. We reanalyzed those recordings to quantify the start of dawn singing in other nine sympatric songbird species. Ranking‐scaling analyses identified a distinctive sequential pattern of dawn singing among these bird species between the first and the second dawn chorus, and meta‐analysis showed a significant trend to singing earlier in the bird community accompanied by the increase in dawn singing intensity in Brownish‐flanked Bush Warbler. Species with songs most similar to that of the Brownish‐flanked Bush Warbler and species that were phylogenetically distantly related to the Brownish‐flanked Bush Warbler showed a greater shift in the onset of dawn singing. Our study is one of the few studies showing how bird song influences heterospecific singing, and this may influence the temporal organization of song activity in the community, and result in synchronization in singing activities among different species, such as singing in dawn and dusk chorus.  相似文献   

7.
Clinical trials are typically designed with an aim to reach sufficient power to test a hypothesis about relative effectiveness of two or more interventions. Their role in informing evidence‐based decision‐making demands, however, that they are considered in the context of the existing evidence. Consequently, their planning can be informed by characteristics of relevant systematic reviews and meta‐analyses. In the presence of multiple competing interventions the evidence base has the form of a network of trials, which provides information not only about the required sample size but also about the interventions that should be compared in a future trial. In this paper we present a methodology to evaluate the impact of new studies, their information size, the comparisons involved, and the anticipated heterogeneity on the conditional power (CP) of the updated network meta‐analysis. The methods presented are an extension of the idea of CP initially suggested for a pairwise meta‐analysis and we show how to estimate the required sample size using various combinations of direct and indirect evidence in future trials. We apply the methods to two previously published networks and we show that CP for a treatment comparison is dependent on the magnitude of heterogeneity and the ratio of direct to indirect information in existing and future trials for that comparison. Our methodology can help investigators calculate the required sample size under different assumptions about heterogeneity and make decisions about the number and design of future studies (set of treatments compared).  相似文献   

8.
Key questions dominating contemporary ecological research and management concern interactions between biodiversity, ecosystem processes, and ecosystem services provision in the face of global change. This is particularly salient for freshwater biodiversity and in the context of river drying and flow‐regime change. Rivers that stop flowing and dry, herein intermittent rivers, are globally prevalent and dynamic ecosystems on which the body of research is expanding rapidly, consistent with the era of big data. However, the data encapsulated by this work remain largely fragmented, limiting our ability to answer the key questions beyond a case‐by‐case basis. To this end, the Intermittent River Biodiversity Analysis and Synthesis (IRBAS; http://irbas.cesab.org ) project has collated, analyzed, and synthesized data from across the world on the biodiversity and environmental characteristics of intermittent rivers. The IRBAS database integrates and provides free access to these data, contributing to the growing, and global, knowledge base on these ubiquitous and important river systems, for both theoretical and applied advancement. The IRBAS database currently houses over 2000 data samples collected from six countries across three continents, primarily describing aquatic invertebrate taxa inhabiting intermittent rivers during flowing hydrological phases. As such, there is room to expand the biogeographic and taxonomic coverage, for example, through addition of data collected during nonflowing and dry hydrological phases. We encourage contributions and provide guidance on how to contribute and access data. Ultimately, the IRBAS database serves as a portal, storage, standardization, and discovery tool, enabling collation, synthesis, and analysis of data to elucidate patterns in river biodiversity and guide management. Contribution creates high visibility for datasets, facilitating collaboration. The IRBAS database will grow in content as the study of intermittent rivers continues and data retrieval will allow for networking, meta‐analyses, and testing of generalizations across multiple systems, regions, and taxa.  相似文献   

9.

Aim

The pattern of increasing biological diversity from high latitudes to the equator [latitudinal diversity gradient (LDG)] has been recognized for > 200 years. Empirical studies have documented this pattern across many different organisms and locations. Our goal was to quantify the evidence for the global LDG and the associated spatial, taxonomic and environmental factors. We performed a meta‐analysis on a large number of individual LDGs that have been published in the 14 years since Hillebrand's ground‐breaking meta‐analysis of the LDG, using meta‐analysis and meta‐regression approaches largely new to the fields of ecology and biogeography.

Location

Global.

Time period

January 2003–September 2015.

Major taxa studied

Bacteria, protists, plants, fungi and animals.

Methods

We synthesized the outcomes of 389 individual cases of LDGs from 199 papers published since 2003, using hierarchical mixed‐effects meta‐analysis and multiple meta‐regression. Additionally, we re‐analysed Hillebrand's original dataset using modern methods.

Results

We confirmed the generality of the LDG, but found the pattern to be weaker than was found in Hillebrand's study. We identified previously unreported variation in LDG strength and slope across longitude, with evidence that the LDG is strongest in the Western Hemisphere. Locational characteristics, such as habitat and latitude range, contributed significantly to LDG strength, whereas organismal characteristics, including taxonomic group and trophic level, did not. Modern meta‐analytical models that incorporate hierarchical structure led to more conservative and sometimes contrasting effect size estimates relative to Hillebrand's initial analysis, whereas meta‐regression revealed underlying patterns in Hillebrand's dataset that were not apparent with a traditional analysis.

Main conclusions

We present evidence of global latitudinal, longitudinal and habitat‐based patterns in the LDG, which are apparent across both marine and terrestrial realms and over a broad taxonomic range of organisms, from bacteria to plants and vertebrates.  相似文献   

10.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

11.
12.
13.
海堤对广西沿海红树林的数量、群落特征和恢复的影响   总被引:1,自引:0,他引:1  
广西大陆海岸线的63%为海堤,海堤数量达498个.海堤建立毁灭了原生红树林,现余5654hm2,其中约85%为堤前红树林.海堤阻截了红树林滩涂的自然海岸地貌,结果是红海榄和木榄已很少,榄李濒危,角果木已消失,海漆和陆岸种类只能沿海堤坡面生长,而先锋红树植物白骨壤和桐花树成为现有红树林的优势种.堤前红树林的恢复受到海堤维护时强烈的人为干扰.堤前滩涂相对于平均海平面的高程较低,不是红树林繁盛的理想滩涂.红树林人工造林的成活率和次生林恢复的速率在很大程度上取决于生境的沉积率.  相似文献   

14.
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity–ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within‐species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non‐linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity–function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within‐species biodiversity for understanding ecological dynamics.  相似文献   

15.
海堤对广西沿海红树林的数量,群落特征和恢复的影响   总被引:19,自引:1,他引:19  
广西大陆海岸线的 63%为海堤 ,海堤数量达 498个 .海堤建立毁灭了原生红树林 ,现余 5654hm2 ,其中约 85%为堤前红树林 .海堤阻截了红树林滩涂的自然海岸地貌 ,结果是红海榄和木榄已很少 ,榄李濒危 ,角果木已消失 ,海漆和陆岸种类只能沿海堤坡面生长 ,而先锋红树植物白骨壤和桐花树成为现有红树林的优势种 .堤前红树林的恢复受到海堤维护时强烈的人为干扰 .堤前滩涂相对于平均海平面的高程较低 ,不是红树林繁盛的理想滩涂 .红树林人工造林的成活率和次生林恢复的速率在很大程度上取决于生境的沉积率 .  相似文献   

16.
17.
This award account attempts to define the status of automated carbohydrate synthesis and its applications while trying to identify areas critical for further development. In this context the work of the Seeberger laboratory over the past 10 years is reviewed. Advances and shortcomings of the first automated oligosaccharide synthesizer platform will be discussed. Using this method, access to a multitude of complex oligosaccharides has been accelerated more than 100-fold. The synthesis of usable quantities of oligosaccharides has given rise to tools that had been common-place in nucleic acid and protein biochemistry. Carbohydrate microarrays are a versatile screening platform, and affinity columns and labeled carbohydrates are beginning to aid glycobiologists. While much has been achieved, many questions remain before a generally applicable set of tools will be available to facilitate carbohydrate research much in the same way oligonucleotide and peptide biology is explored today. Application of this technology to synthetic carbohydrate antigens in synthetic vaccine candidates against parasites and bacteria is attractive and has already yielded important insights.  相似文献   

18.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   

19.
20.
生态环境恢复重建与农村妇女受教育程度的关联性分析   总被引:2,自引:0,他引:2  
王静  林茂兹 《生态科学》2004,23(4):323-326
搞清影响农村生态环境的因素,可以为防止农村生态环境的进一步恶化,为农村生态环境恢复和重建奠定基础。调查结果表明农村妇女受教育程度与农村生态环境的恢复与重建呈正相关,并且农村生态环境恶化与农业生产有明显联系;农村妇女受教育程度和农业生产是影响农村生态环境恢复与重建的直接原因。搞好农村生态环境保护与建设必须以发展农村经济为前提,以提高农村的教育投资和农村妇女受教育程度为基础,落实具体的科技措施,重视农业生产引导与管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号