首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small angle solution X‐ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero‐assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X‐ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two‐component systems such as a nucleoprotein or a lipid‐protein assembly. Time‐resolved small and wide‐angle solution scattering to study biological processes in real time, and the use of localized heavy‐atom labeling and anomalous solution scattering for applications as FRET‐like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X‐ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.  相似文献   

2.
Proteins hold great promise in forming complex nanoscale structures which could be used in the development of new nanomaterials, devices, biosensors, electronics, and pharmaceuticals. The potential to produce nanomaterials from proteins is well supported by the numerous examples of self‐assembling proteins found in nature. We have explored self‐assembling proteins for use as supramolecular building blocks, or tectons, specifically the N‐terminal domain of Lsr2, Nterm‐Lsr2. A key feature of this protein is that it undergoes self‐assembly via proteolytic cleavage, thereby allowing us to generate supramolecular assemblies in response to a specific trigger. Herein, we report the effects of pH and protein concentration on the oligomerization of Nterm‐Lsr2. Furthermore, via protein engineering, we have introduced a new trigger for oligomerization via enteropeptidase cleavage. The new construct of Nterm‐Lsr2 can be activated and assembled in a controlled fashion and provides some ability to alter the ratio of higher ordered structures formed. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 260–270, 2015.  相似文献   

3.
The self‐incompatibility (SI) response occurs widely in flowering plants as a means of preventing self‐fertilization. In these self/non‐self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil‐secreted S‐RNases enter the pollen tube and function as cytotoxins to specifically arrest self‐pollen tube growth. Recent studies have revealed that the S‐locus F‐box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF‐interacting Skp1‐like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1‐Cullin1‐F‐box)SLF complex, indicating that this pollen‐specific SSK1‐SLF interaction occurs in both Petunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross‐pollen compatibility (CPC) in the S‐RNase‐based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S‐RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1‐like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.  相似文献   

4.
Protein targeting in malaria parasites is a complex process, involving several cellular compartments that distinguish these cells from more familiar systems, such as yeast or mammals. At least a dozen distinct protein destinations are known. The best studied of these is the vestigial chloroplast (the apicoplast), but new tools promise rapid progress in understanding how Plasmodium falciparum and related apicomplexan parasites traffic proteins to their invasion-related organelles, and how they modify the host by trafficking proteins into its cytoplasm and plasma membrane. Here, Giel van Dooren and colleagues discuss recent insights into protein targeting via the secretory pathway in this fascinating and important system. This topic emerged as a major theme at the Molecular Approaches to Malaria conference, Lorne, Australia, 2-5 February 2000.  相似文献   

5.
Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease‐mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer‐immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi‐layer co‐polymeric targeted drug delivery system based on drug‐loaded PLGA‐Aptamer‐PEI (DPAP) formulation with a stage‐wise delivery mechanism. A thrombin‐specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ~0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249–261, 2018  相似文献   

6.
Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self‐renewal) is crucial for tissue repair. Here, we showed that AMP‐activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self‐renewal. AMPKα1?/? MuSCs displayed a high self‐renewal rate, which impairs muscle regeneration. AMPKα1?/? MuSCs showed a Warburg‐like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non‐limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1?/? phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1?/? MuSC self‐renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.  相似文献   

7.
Porcine circovirus type 2 (PCV‐2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus‐associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV‐2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV‐2 capsid protein (CP) from plants is an essential first step towards the goal of a plant‐produced PCV‐2 vaccine candidate. In this study, the PCV‐2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV‐2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self‐assembled into virus‐like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant‐produced PCV‐2 VLPs elicited specific antibody responses to PCV‐2 CP. This is the first report describing the expression of PCV‐2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.  相似文献   

8.
Digging for innate immunity since Darwin and Metchnikoff   总被引:14,自引:0,他引:14  
Immune systems are, increasingly, being studied from comparative perspectives. The analysis of the immunedefense systems of invertebrates, such as fruit flies and earthworms, is an important part of this effort. These systems are innate, natural non‐specific, non‐anticipatory and non‐clonal. This is in contrast to the macrophage T and B systems that characterize vertebrate adaptive immunity whose properties can be categorized as adaptive, induced, specific, anticipatory, and clonal. In this review, we will focus on the earthworm system. Earthworms, like other complex invertebrates, possess several leukocyte types and synthesize and secrete a variety of immunoprotective molecules. The system as a whole effects phagocytosis, encapsulation, agglutination, opsonization, clotting and lysis of foreign components. At least two major leukocytes, small coelomocytes, and large coelomocytes mediate lytic reactions against several targets. Destruction of tumor cells in vitro shows that phagocytosis and natural killer cell responses are distinct properties of coelomocytes. A third type, the chlorogogen cell, synthesizes and sheds effector lytic molecules. Among the lytic molecules, three have been identified and sequenced (fetidins, CCF‐1, lysenin) and another has been discovered (eiseniapore), while three other molecules, H1 H2 H3, share agglutinating and lysing functions. In contrast to these, Lumbricin I is the only known molecule of the earthworm system that is antimicrobial but non‐lytic. Altogether the cellular and humoral components of the earthworm system function to distinguish between self and not self, dispose of internal (cancer?), damaged components and external antigens (microbes). The evolutionary context of the earthworm innate immune system is discussed at the end of this article. BioEssays 24:319–333, 2002. ©2002 Wiley Periodicals, Inc.  相似文献   

9.
10.
The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR‐Cas and restriction‐modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six‐gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones. This cassette includes a putative Lon‐like protease, an alkaline phosphatase domain protein, a putative RNA‐binding protein, a DNA methylase, an ATPase‐domain protein, and a protein of unknown function. We denote this novel defense system BREX (Bacteriophage Exclusion) and show that it allows phage adsorption but blocks phage DNA replication. Furthermore, our results suggest that methylation on non‐palindromic TAGGAG motifs in the bacterial genome guides self/non‐self discrimination and is essential for the defensive function of the BREX system. However, unlike restriction‐modification systems, phage DNA does not appear to be cleaved or degraded by BREX, suggesting a novel mechanism of defense. Pan genomic analysis revealed that BREX and BREX‐like systems, including the distantly related Pgl system described in Streptomyces coelicolor, are widely distributed in ~10% of all sequenced microbial genomes and can be divided into six coherent subtypes in which the gene composition and order is conserved. Finally, we detected a phage family that evades the BREX defense, implying that anti‐BREX mechanisms may have evolved in some phages as part of their arms race with bacteria.  相似文献   

11.
Optical and genetic tools are beginning to revolutionize thestudies of neuronal circuits. Neurons can now be labeled withconventional or genetically encoded indicators that allow theiractivity to be monitored during behavior in intact animals.Laser ablations and genetic inactivation offer ways to perturbactivity of specific cells to test their contributions to behavior.These approaches promise to speed progress in the understandingof vertebrate networks in genetic model systems such as miceand zebrafish. Here we review some of the progress in applyingthese tools, with an emphasis on our work to develop and applythese approaches in the zebrafish model.  相似文献   

12.
We developed JVirGel, a collection of tools for the simulation and analysis of proteomics data. The software creates and visualizes virtual two-dimensional (2D) protein gels based on the migration behaviour of proteins in dependence of their theoretical molecular weights in combination with their calculated isoelectric points. The utilization of all proteins of an organism of interest deduced from genes of the corresponding genome project in combination with the elimination of obvious membrane proteins permits the creation of an optimized calculated proteome map. The electrophoretic separation behaviour of single proteins is accessible interactively in a Java(TM) applet (small application in a web browser) by selecting a pI/MW range and an electrophoretic timescale of interest. The calculated pattern of protein spots helps to identify unknown proteins and to localize known proteins during experimental proteomics approaches. Differences between the experimentally observed and the calculated migration behaviour of certain proteins provide first indications for potential protein modification events. When possible, the protein spots are directly linked via a mouse click to the public databases SWISS-PROT and PRODORIC. Additionally, we provide tools for the serial calculation and visualization of specific protein properties like pH dependent charge curves and hydrophobicity profiles. These values are helpful for the rational establishment of protein purification procedures. The proteomics tools are available on the World Wide Web at http://prodoric.tu-bs.de/proteomics.php.  相似文献   

13.
Since mouse embryonic stem (ES) cells was first derived in 1981, the ability of this unprecedented cell type to self‐renew and differentiate without limit has revolutionized the discovery tools that are used to study gene functions and development. Furthermore, they have inspired others to hunt for similar cells from other species. The derivation of human ES cells in 1998 has accelerated these discoveries and has also widely provoked public interest, due to both the scientific significance of these cells for human tissue regeneration and the ethical disputes over the use of donated early human embryos. However, this is no longer a barrier, with the recent discovery of methods that can convert differentiated somatic cells into ES‐like cells or induced pluripotent stem (iPS) cells, by using defined reprogramming factors. This review attempts to summarize the progresses in the derivation of ES cells (as well as other embryo‐derived pluripotent cells) and iPS cells from various species. We will focus on the molecular and biological features of the cells, as well as the different determinants identified thus far to sustain their pluripotency. J. Cell. Biochem. 109: 16–25, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Lithium/selenium‐sulfur batteries have recently received considerable attention due to their relatively high specific capacities and high electronic conductivity. Different from the traditional encapsulation strategy for suppressing the shuttle effect, an alternative approach to directly bypass polysulfide/polyselenide formation via rational solid‐electrolyte interphase (SEI) design is demonstrated. It is found that the robust SEI layer that in situ forms during charge/discharge via interplay between rational cathode design and optimal electrolytes could enable solid‐state (de)lithiation chemistry for selenium‐sulfur cathodes. Hence, Se‐doped S22.2Se/Ketjenblack cathodes can attain a high reversible capacity with minimal shuttle effects during long‐term and high rate cycling. Moreover, the underlying solid‐state (de)lithiation mechanism, as evidenced by in situ 7Li NMR and in operando synchrotron X‐ray probes, further extends the optimal sulfur confinement pore size to large mesopores and even macropores that have been long considered as inferior sulfur or selenium host materials, which play a crucial role in developing high volumetric energy density batteries. It is expected that the findings in this study will ignite more efforts to tailor the compositional/structure characteristics of the SEI layers and the related ionic transport across the interface by electrode structure, electrolyte solvent, and electrolyte additive screening.  相似文献   

15.
Jing Nie  Eri Hashino 《EMBO reports》2017,18(3):367-376
Three‐dimensional (3D) stem cell differentiation cultures recently emerged as a novel model system for investigating human embryonic development and disease progression in vitro, complementing existing animal and two‐dimensional (2D) cell culture models. Organoids, the 3D self‐organizing structures derived from pluripotent or somatic stem cells, can recapitulate many aspects of structural organization and functionality of their in vivo organ counterparts, thus holding great promise for biomedical research and translational applications. Importantly, faithful recapitulation of disease and development processes relies on the ability to modify the genomic contents in organoid cells. The revolutionary genome engineering technologies, CRISPR/Cas9 in particular, enable investigators to generate various reporter cell lines for prompt validation of specific cell lineages as well as to introduce disease‐associated mutations for disease modeling. In this review, we provide historical overviews, and discuss technical considerations, and potential future applications of genome engineering in 3D organoid models.  相似文献   

16.
Bioelectrochemical systems (BES) hold great promise for sustainable energy generation via a microbial catalyst from organic matter, for example, from wastewater. To improve current generation in BES, understanding the underlying microbiology of the electrode community is essential. Electron mediator producing microorganism like Pseudomonas aeruginosa play an essential role in efficient electricity generation in BES. These microbes enable even nonelectroactive microorganism like Enterobacter aerogenes to contribute to current production. Together they form a synergistic coculture, where both contribute to community welfare. To use microbial co‐operation in BES, the physical and chemical environments provided in the natural habitats of the coculture play a crucial role. Here, we show that synergistic effects in defined cocultures of P. aeruginosa and E. aerogenes can be strongly enhanced toward high current production by adapting process parameters, like pH, temperature, oxygen demand, and substrate requirements. Especially, oxygen was identified as a major factor influencing coculture behavior and optimization of its supply could enhance electric current production over 400%. Furthermore, operating the coculture in fed‐batch mode enabled us to obtain very high current densities and to harvest electrical energy for 1 month. In this optimized condition, the coulombic efficiency of the process was boosted to 20%, which is outstanding for mediator‐based electron transfer. This study lays the foundation for a rationally designed utilization of cocultures in BES for bioenergy generation from specific wastewaters or for bioprocess sensing and for benefiting from their synergistic effects under controlled bioprocess condition.  相似文献   

17.
Autophagy, a process of self‐digestion of cellular constituents, regulates the balance between protein synthesis and protein degradation. Beclin 1 represents an important component of the autophagic machinery. It interacts with proteins that positively regulate autophagy, such as Vps34, UVRAG, and Ambra1, as well as with anti‐apoptotic proteins such as Bcl‐2 via its BH3‐like domain to negatively regulate autophagy. Thus, Beclin 1 interactions with several proteins may regulate autophagy. To identify novel Beclin 1 interacting proteins, we utilized a GST‐Beclin 1 fusion protein. Using mass spectroscopic analysis, we identified Beclin 1 as a protein that interacts with GST‐Beclin 1. Further examination by cross linking and co‐immunoprecipitation experiments confirmed that Beclin 1 self‐interacts and that the coiled coil and the N‐terminal region of Beclin 1 contribute to its oligomerization. Importantly, overexpression of vps34, UVRAG, or Bcl‐xL, had no effect on Beclin 1 self‐interaction. Moreover, this self‐interaction was independent of autophagy induction by amino acid deprivation or rapamycin treatment. These results suggest that full‐length Beclin 1 is a stable oligomer under various conditions. Such an oligomer may provide a platform for further protein–protein interactions. J. Cell. Biochem. 110: 1262–1271, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

18.
Proteins of the aegerolysin family have a high abundance in Fungi. Due to their specific binding to membrane lipids, and their membrane‐permeabilization potential in concert with protein partner(s) belonging to a membrane‐attack‐complex/perforin (MACPF) superfamily, they were proposed as useful tools in different biotechnological and biomedical applications. In this work, we performed functional studies on expression of the genes encoding aegerolysin and MACPF‐like proteins in Aspergillus niger. Our results suggest the sporulation process being crucial for strong induction of the expression of all these genes. However, deletion of either of the aegerolysin genes did not influence the growth, development, sporulation efficiency and phenotype of the mutants, indicating that aegerolysins are not key factors in the sporulation process. In all our expression studies we noticed a strong correlation in the expression of one aegerolysin and MACPF‐like gene. Aegerolysins were confirmed to be secreted from the fungus. We also showed the specific interaction of a recombinant A. niger aegerolysin with an invertebrate‐specific membrane sphingolipid. Moreover, using this protein labelled with mCherry we successfully stained insect cells membranes containing this particular sphingolipid. Our combined results suggest, that aegerolysins in this species, and probably also in other aspergilli, could be involved in defence against predators.  相似文献   

19.
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ‐ring formation and represents one of the best‐understood examples of emergent protein self‐organization in nature. The oscillatory patterns of the Min‐system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self‐organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole‐to‐pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction‐diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA‐like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min‐system function in bacteria and organelles with internal membrane systems.  相似文献   

20.
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin‐like and immunoglobulin‐like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species‐specific differences. The variable, polymorphic family of killer cell immunoglobulin‐like receptors (KIR) that regulate human NK cell development and function arose recently, from a single‐copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co‐evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non‐human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non‐human primate species, at a level comparable to that achieved for the human species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号