共查询到20条相似文献,搜索用时 0 毫秒
1.
Ayana de Brito Martins Marcus Aloizio Martinez de Aguiar 《Evolution; international journal of organic evolution》2017,71(2):442-448
Ring species are groups of organisms that dispersed along a ring‐shaped region in such a way that the two ends of the population that meet after many generations are reproductively isolated. They provide a rare opportunity to understand the role of spatial structuring in speciation. Here, we simulate the evolution of ring species assuming that individuals become sexually isolated if the genetic distance between them is above a certain threshold. The model incorporates two forms of dispersal limitation: exogenous geographic barriers that limit the population range and endogenous barriers that result in genetic structuring within the population range. As expected, species' properties that reduce gene flow within the population range facilitate the evolution of reproductive isolation and ring species formation. However, if populations are confined to narrow ranges by geographic barriers, ring species formation increases when local mating is less spatially restricted. Ring species are most likely to form if a population expands while confined to a quasi‐unidimensional range but preserving high mobility in the direction of the range expansion. These conditions are unlikely to be met or persist in real populations and may explain why ring species are rare. 相似文献
2.
Campbell DR Waser NM Aldridge G Wu CA 《Evolution; international journal of organic evolution》2008,62(10):2616-2627
Various models purporting to explain natural hybrid zones make different assumptions about the fitness of hybrids. One class of models assumes that hybrids have intrinsically low fitness due to genetic incompatibilities, whereas other models allow hybrid fitness to vary across natural environments. We used the intrinsic rate of increase to assess lifetime fitness of hybrids between two species of montane plants Ipomopsis aggregata and Ipomopsis tenuituba planted as seed into multiple field environments. Because fitness is predicted to depend upon genetic composition of the hybrids, we included F1 hybrids, F2 hybrids, and backcrosses in our field tests. The F2 hybrids had female fitness as high, or higher, than expected under an additive model of fitness. These results run counter to any model of hybrid zone dynamics that relies solely on intrinsic nuclear genetic incompatibilities. Instead, we found that selection was environmentally dependent. In this hybrid zone, cytoplasmic effects and genotype-by-environment interactions appear more important in lowering hybrid fitness than do intrinsic genomic incompatibilities between nuclear genes. 相似文献
3.
M. Ravinet R. Faria R. K. Butlin J. Galindo N. Bierne M. Rafajlović M. A. F. Noor B. Mehlig A. M. Westram 《Journal of evolutionary biology》2017,30(8):1450-1477
Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. 相似文献
4.
IAN J. WANG 《Molecular ecology》2009,18(18):3847-3856
Environmental variables can strongly influence a variety of intra- and inter-population processes, including demography, population structure and gene flow. When environmental conditions are particularly harsh for a certain species, investigating these effects is important to understanding how populations persist under difficult conditions. Furthermore, species inhabiting challenging environments present excellent opportunities to examine the effects of complex landscapes on population processes because these effects will often be more pronounced. In this study, I use 16 microsatellite loci to examine population structure, gene flow and demographic history in the black toad, Bufo exsul , which has one of the most restricted natural ranges of any amphibian. Bufo exsul inhabits four springs in the Deep Springs Valley high desert basin and has never been observed more than several meters from any source of water. My results reveal limited gene flow and moderately high levels of population structure ( F ST = 0.051–0.063) between all but the two closest springs. I found that the geographic distance across the arid scrub habitat between springs is significantly correlated with genetic structure when distance accounts for topography and barriers to dispersal. I also found very low effective population sizes ( N e = 7–30) and substantial evidence for historical population bottlenecks in all four populations. Together, these results suggest that the desert landscape and B. exsul 's high habitat specificity contribute significantly to population structure and demography in this species and emphasize the importance of considering behavioural and landscape data in conservation genetic studies of natural systems. 相似文献
5.
Computer simulations were used to investigate population conditions under which phylogeographic breaks in gene genealogies
can be interpreted with confidence to infer the existence and location of historical barriers to gene flow in continuously
distributed, low-dispersal species. We generated collections of haplotypic gene trees under a variety of demographic scenarios
and analyzed them with regard to salient genealogical breaks in their spatial patterns. In the first part of the analysis,
we estimated the frequency in which the spatial location of the deepest phylogeographic break between successive pairs of
populations along a linear habitat coincided with a spatial physical barrier to dispersal. Results confirm previous reports
that individual gene trees can show ‘haphazard’ phylogeographic discontinuities even in the absence of historical barriers
to gene flow. In the second part of the analysis, we assessed the probability that pairs of gene genealogies from a set of
population samples agree upon the location of a geographical barrier. Our findings extend earlier reports by demonstrating
that spatially concordant phylogeographic breaks across independent neutral loci normally emerge only in the presence of longstanding
historical barriers to gene flow. Genealogical concordance across multiple loci thus becomes a deciding criterion by which
to distinguish between stochastic and deterministic causation in accounting for phylogeographic discontinuities in continuously
distributed species. 相似文献
6.
Evolution in Darwin's finches: a review of a study on Isla Daphne Major in the Galápagos archipelago
Grant BR 《Zoology (Jena, Germany)》2003,106(4):255-259
This paper reviews research pertaining to the problem of speciation of the finches on the Galápagos archipelago carried out by assistants, several colleagues, Peter Grant and myself. I give a brief history of the radiation, examine the process of divergence by natural selection over time, and then consider the nature of the reproductive barrier to gene flow between closely related species. Fluctuating climatic conditions have produced a continuously changing ecological landscape and altered feeding conditions for the finches over the last 30 years. Finch populations tracked these changes by natural selection and evolutionary responses to the main events. At each event significant morphological change occurred from one generation to the next generation. As a consequence of these accumulated changes, the mean bill shape and body size of the Geospiza fortis and G. scandens populations differed markedly from 1973 to 2002. Song, a learned culturally transmitted trait, acted as a barrier to reproduction between these species. Rare incidences of misimprinting on song led to hybridization and introgression. Low levels of gene flow from one species to another increased genetic variation on which selection acted. Although the major driving force of diversification was ecological change, the process of diversification involved a subtle interplay between ecology, genetic evolution and learned culturally transmitted traits. An important message for conservation is that neither the environment nor species are fixed entities, therefore a wise strategy for conserving endangered species should keep them capable of further change. 相似文献
7.
基因流存在条件下的物种形成研究述评:生殖隔离机制进化 总被引:2,自引:0,他引:2
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。 相似文献
8.
Integration of populations and differentiation of species 总被引:7,自引:1,他引:6
9.
JIE GAO BAOSHENG WANG JIAN‐FENG MAO PÄR INGVARSSON QING‐YIN ZENG XIAO‐RU WANG 《Molecular ecology》2012,21(19):4811-4827
Pinus densata is an ecologically successful homoploid hybrid that inhabits vast areas of heterogeneous terrain on the south‐eastern Tibetan Plateau as a result of multiple waves of colonization. Its region of origin, route of colonization onto the plateau and the directions of introgression with its parental species have previously been defined, but little is known about the isolation and divergence history of its populations. In this study, we surveyed nucleotide polymorphism over eight nuclear loci in 19 representative populations of P. densata and its parental species. Using this information and coalescence simulations, we assessed the historical changes in its population size, gene flow and divergence in time and space. The results indicate a late Miocene origin for P. densata associated with the recent uplift of south‐eastern Tibet. The subsequent differentiation between geographical regions of this species began in the late Pliocene and was induced by regional topographical changes and Pleistocene glaciations. The ancestral P. densata population had a large effective population size but the central and western populations were established by limited founders, suggesting that there were severe bottlenecks during the westward migration out of the ancestral hybrid zone. After separating from their ancestral populations, population expansion occurred in all geographical regions especially in the western range. Gene flow in P. densata was restricted to geographically neighbouring populations, resulting in significant differentiation between regional groups. The new information on the divergence and demographic history of P. densata reported herein enhances our understanding of its speciation process on the Tibetan Plateau. 相似文献
10.
Maddie E James Henry Arenas-Castro Jeffrey S Groh Scott L Allen Jan Engelstdter Daniel Ortiz-Barrientos 《Molecular biology and evolution》2021,38(11):4805
Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow. 相似文献
11.
Patrik Nosil Zach Gompert Timothy E. Farkas Aaron A. Comeault Jeffrey L. Feder C. Alex Buerkle Thomas L. Parchman 《Proceedings. Biological sciences / The Royal Society》2012,279(1749):5058-5065
Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated ‘outlier loci’, allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome. 相似文献
12.
Flowers JM Schroeter SC Burton RS 《Evolution; international journal of organic evolution》2002,56(7):1445-1453
As a consequence of free spawning in the unpredictable nearshore environment, marine species with large fecundities and high pre-reproductive mortality may be subject to extreme variance in reproductive success. If the unpredictability of the ocean results in only a small subset of the adult population contributing to each larval cohort, then reproduction may be viewed as a sweepstakes, with chance events determining which adults are successful each spawning season. Such a reproductive sweepstakes scenario may partially account for large reductions in effective population sizes relative to census population sizes in marine species. We evaluated two predictions of the sweepstakes reproductive success hypothesis by testing: (1) whether sea urchin recruits contain reduced genetic variation relative to the adult population; and (2) whether cohorts of sea urchin recruits are genetically differentiated. Mitochondrial DNA sequences were collected from 283 recently settled Strongylocentrotus purpuratus recruits from four annual cohorts spanning seven years in locations throughout California. Observed haplotype numbers and haplotype diversities showed little evidence of reduced genetic variation in the recruits relative to the diversity estimated from a previously reported sample of 145 S. purpuratus adults. Different cohorts of recruits were in some cases mildly differentiated from each other. A computer simulation of sweepstakes recruitment indicates that our sampling strategy had sufficient statistical power to detect large variances in reproductive success. 相似文献
13.
Genetic differentiation between three populations of the pied flycatcher Ficedula hypoleuca (Norway, Czech Republic and Spain, respectively) was investigated at microsatellite loci and mitochondrial DNA (mtDNA) sequences and compared with the pattern of differentiation of male plumage colour. The Czech population lives sympatrically with the closely related collared flycatcher (F. albicollis) whereas the other two are allopatric. Allopatric populations are on average more conspicuously coloured than sympatric ones, a pattern that has been explained by sexual selection for conspicuous colour in allopatry and a character displacement on breeding plumage colour in sympatry that reduces the rate of hybridization with the collared flycatcher. The Czech population was genetically indistinguishable from the Norwegian population at microsatellite loci and mtDNA sequences. Recent isolation and/or gene flow may explain the lack of genetic differentiation. Accordingly, different selection on plumage colour in the two populations is either sufficiently strong so that gene flow has little impact on the pattern of colour variation, or differentiation of plumage colour occurred so recently that the (presumably) neutral, fast evolving markers employed here are unable to reflect the differentiation. Genetically, the Spanish population was significantly differentiated from the other populations, but the divergence was much more pronounced at mtDNA compared to microsatellites. This may reflect increased rate of differentiation by genetic drift at the mitochondrial, compared with the nuclear genome, caused by the smaller effective population size of the former genome. In accordance with this interpretation, a genetic pattern consistent with effects of small population size in the Spanish population (genetic drift and inbreeding) were also apparent at the microsatellites, namely reduced allelic diversity and heterozygous deficiency. 相似文献
14.
Ashley M. Jensen Nicholas P. O'Neil Andrew N. Iwaniuk Theresa M. Burg 《Ecology and evolution》2019,9(10):5572-5592
The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought. 相似文献
15.
Nan Lin Jacob B. Landis Yanxia Sun Xianhan Huang Xu Zhang Qun Liu Huajie Zhang Hang Sun Hengchang Wang Tao Deng 《Ecology and evolution》2021,11(12):8000
The flora of northern China forms the main part of the Sino‐Japanese floristic region and is located in a south–north vegetative transect in East Asia. Phylogeographic studies have demonstrated that an arid belt in this region has promoted divergence of plants in East Asia. However, little is known about how plants that are restricted to the arid belt of flora in northern China respond to climatic oscillation and environmental change. Here, we used genomic‐level data of Myripnois dioica across its distribution as a representative of northern China flora to reconstruct plant demographic history, examine local adaptation related to environmental disequilibrium, and investigate the factors related to effective population size change. Our results indicate M. dioica originated from the northern area and expanded to the southern area, with the Taihang Mountains serving as a physical barrier promoting population divergence. Genome‐wide evidence found strong correlation between genomic variation and environmental factors, specifically signatures associated with local adaptation to drought stress in heterogeneous environments. Multiple linear regression analyses revealed joint effects of population age, mean temperature of coldest quarter, and precipitation of wettest month on effective population size (Ne). Our current study uses M. dioica as a case for providing new insights into the evolutionary history and local adaptation of northern China flora and provides qualitative strategies for plant conservation. 相似文献
16.
17.
Andrew J. Lowe Henri Caron Nathalie Colpaert Christopher Dick Bryan Finegan Mike Gardner Godelieve Gheysen Rogério Gribel J. Berton C. Harris Antoine Kremer Maristerra R. Lemes Rogerio Margis Carlos M. Navarro Fabiano Salgueiro Heidy M. Villalobos‐Barrantes Stephen Cavers 《Diversity & distributions》2018,24(6):730-741
Aim
Life history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both between‐ and within‐population) of genetic diversity in Neotropical tree species.Location
The NeotropicsMethods
We present a meta‐analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fine‐scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.Results
We found that pioneer and narrow range species had lower levels but greater variance in genetic diversity—signs of founder effects and stronger genetic drift. Animal‐dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fine‐scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.Main conclusions
Our multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.18.
《Evolutionary Applications》2017,10(6):630-639
The explosive growth of empirical population genetics has seen a proliferation of analytical methods leading to a steady increase in our ability to accurately measure key population parameters, including genetic isolation, effective population size, and gene flow, in natural systems. Assuming they yield similar results, population genetic methods offer an attractive complement to, or replacement of, traditional field‐ecological studies. However, empirical assessments of the concordance between direct field‐ecological and indirect population genetic studies of the same populations are uncommon in the literature. In this study, we investigate genetic isolation, rates of dispersal, and population sizes for the endangered California tiger salamander, Ambystoma californiense, across multiple breeding seasons in an intact vernal pool network. We then compare our molecular results to a previously published study based on multiyear, mark–recapture data from the same breeding sites. We found that field and genetic estimates of population size were only weakly correlated, but dispersal rates were remarkably congruent across studies and methods. In fact, dispersal probability functions derived from genetic data and traditional field‐ecological data were a significant match, suggesting that either method can be used effectively to assess population connectivity. These results provide one of the first explicit tests of the correspondence between landscape genetic and field‐ecological approaches to measuring functional population connectivity and suggest that even single‐year genetic samples can return biologically meaningful estimates of natural dispersal and gene flow. 相似文献
19.
V. Vaughan Symonds Pamela S. Soltis Douglas E. Soltis 《Evolution; international journal of organic evolution》2010,64(7):1984-2003
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species. 相似文献
20.
ELSEMARIE KRAGH NIELSEN CARSTEN RIIS OLESEN CINO PERTOLDI PETER GRAVLUND JAMES S. F. BARKER NADIA MUCCI ETTORE RANDI VOLKER LOESCHCKE 《Biological journal of the Linnean Society. Linnean Society of London》2008,95(4):688-701
The red deer (Cervus elaphus) population in Denmark became almost extinct in recent historical times due to over‐hunting. The species has subsequently recovered within remote areas, but non‐Danish individuals have been introduced at several localities. To assess genetic structure, past demographic history, and the possibility of a still existing original stock, we analysed 349 specimens from 11 geographically separate areas and from three enclosed areas, genotyping 11 microsatellite loci. Moreover, an 826‐bp fragment of the control region of the mitochondrial DNA was sequenced for 116 recent specimens and seven museum specimens. There was a significant difference in mean expected heterozygosity (HE) between the three enclosed areas and the 11 unenclosed areas. Significant departures from Hardy–Weinberg equilibrium were observed in the three enclosed areas and in nine of the unenclosed areas. The overall degree of genetic differentiation among all 14 areas was significant (FST = 0.09, P < 0.01), primarily because the mean pairwise FST for the three enclosed areas was significantly higher than that for the 11 unenclosed areas. A Bayesian clustering procedure detected three genetically distinct populations and indicated reduced gene flow between the enclosed and unenclosed areas. The individuals in the unenclosed areas show genotypic mixture, presumably as a result of gene flow among them. Markov Chain Monte Carlo simulations, based on the genealogical history of the microsatellite alleles, suggest a drastic decline in the effective population size of the enclosed areas some 188–474 years ago. Mitochondrial DNA analysis of the recent specimens showed seven haplotypes. Individuals from the enclosed Jægersborg Dyrehave contain haplotypes that occur all over Denmark and also are found in Western Europe. A close relationship between Scandinavian and Western European red deer is most likely. Only individuals from the unenclosed Lindenborg Estate and the enclosed Tofte Skov did not group with any other Danish individuals. As six of seven museum specimens had haplotypes also found in modern Danish samples, the current population of red deer in Denmark is genetically close to the original Danish red deer. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 688–701. 相似文献