首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用溶液培养法在无寄主伴生的条件下对三色马先蒿(Pedicularis tricolor)和大王马先蒿(P. rex)进行培养,分别分析了不同氮磷供给水平(标准Long Ashton营养液、缺氮、缺磷、2倍氮、2倍磷)及不同氮素形态(硝态氮和铵态氮)对两种马先蒿根系形态建成的影响。结果表明:1)氮磷供给水平对两种马先蒿的主根长、侧根长、侧根数量以及吸器发生的影响存在种间差异,缺氮和缺磷均能促进三色马先蒿主根和侧根的伸长生长及吸器的产生,而相同条件下大王马先蒿根系生长受到抑制,且没有吸器产生;2)氮素形态对两种马先蒿根系形态建成及生长发育存在影响:1倍硝态氮的处理中,三色马先蒿的根系生长最好,生物量积累最多,相同条件下大王马先蒿根系生长和生物量积累与标准营养液处理无差异,而仅供应铵态氮对二者的生长不利。此外,发现三色马先蒿的吸器产生不需要机械刺激。初步推测,两种马先蒿的吸器产生机制或进程存在差异,氮和磷可能参与了吸器发生过程的调控。  相似文献   

2.
杨阳  刘秉儒 《生态学报》2015,35(22):7562-7570
通过对宁夏荒漠草原6种地带性优势物种长芒草、蒙古冰草、甘草、牛心朴子、黑沙蒿和苦豆子植物根际与非根际土壤养分和微生物量分布特征进行研究,探讨不同植物根际养分的富集的相关性和差异性。研究结果表明:6种植物根际土壤养分和微生物量均表现出明显的富集效应,根际富集率大小依次为菊科(黑沙蒿)豆科(苦豆子、甘草)禾本科(长芒草、蒙古冰草)萝藦科(牛心朴子);全磷(TP)在根际和非根际中无显著差异(P0.05),其它土壤养分及理化指标在根际中均表现出显著富集(P0.05),土壤养分中以有机碳(SOC)的富集作用最为明显;土壤有效态养分较全量养分对植物根际微小的变化响应更为灵敏;不同荒漠植物根际与非根际SOC与全氮(TN)呈极显著线性关系(P0.01),TN与碱解氮之间呈极显著线性关系(P0.01),TP与有效磷(AP)没有显著的相关性(P0.05)。荒漠植物土壤有效养分在根际存在一定的富集,灌木和豆科植物的根际效应的大于禾本科植物,它们通过降低根际pH值可以提高根际养分,有利于在脆弱环境下对土壤养分的有效利用。  相似文献   

3.
植物根系是全球陆地生态系统碳储量的重要组成部分,在全球生态系统碳循环中起着重要作用,日益加剧的氮沉降会影响根系生物量在空间和不同径级的分配,进而影响森林生态系统的生产力和土壤养分循环。以杉木幼树为研究对象,通过野外氮沉降模拟实验,研究氮沉降四年后对不同土层、不同径级根系生物量的影响。结果发现:(1)低氮和高氮处理总细根生物量较对照均无显著差异(P > 0.05),高氮处理粗根生物量及总根系生物量较对照分别增加45%和40%(P < 0.05);(2)与对照相比,施氮处理显著增加20-40 cm与40-60 cm土层细根和粗根生物量,且在低氮处理下,20-40 cm土层细根、粗根在总土层细根与粗根生物量的占比显著提高。(3)与对照相比,高氮处理显著增加了2-5 mm、5-10 mm及10-20 mm径级的根系生物量,低氮处理显著增加2-5 mm、5-10 mm径级根系生物量,且显著降低20-50 mm径级根系生物量。综上所述表明:氮沉降后杉木幼树通过增加较粗径级根系来增加对养分及水分的输送,同时通过增加深层根系生物量及其比例的策略来维持杉木幼树的快速生长;而根系生物量的增加,在一定程度上会增加根系碳源的输入,影响土壤碳循环过程。  相似文献   

4.
结合统计学和地统计学的理论,探讨了采伐干扰对华北落叶松林下草本根系生物量空间异质性及与林下土壤含水量、全氮、硝态氮、铵态氮、pH及华北落叶松细根生物量空间异质性的关联性。结果表明,采伐干扰样地草本根系生物量为 31.17 g/m2,明显小于未干扰样地(72.01 g/m2);采伐干扰导致草本根系生物量更多地向表层积聚。0~10 cm土层,采伐干扰样地草本根系生物量的空间异质性(C0+C=31330.0)和空间自相关性(C/C0+C=92.5%)明显增强,表现出较强的空间依赖性。采伐干扰后,土壤水分、全氮、硝态氮和铵态氮对草本根系生物量的相关性增强;未采伐干扰样地华北落叶松细根生物量与草本根系生物量的相关性较强。  相似文献   

5.
以内蒙古贝加尔针茅草原为研究对象,分析了放牧对植被根系分布特征的影响及其与土壤理化性状的相互关系。结果表明:放牧导致植被根系分布发生显著变化;0~10cm土层根系生物量占0~40cm根系总生物量的65.9%~82.6%,直径≥2mm根系和直径1mm的根系对放牧影响较为敏感;植被根系分布与土壤容重、含水量、全氮、全磷、有机碳含量以及阳离子交换量有一定程度的相关性,放牧主要通过改变土壤理化特征影响不同径级根系生物量的分布,同时各径级根系分布特征对土壤理化性状有一定的反馈作用。  相似文献   

6.
基于4月底到9月底东北地区玉米农田土壤呼吸作用全生长季的观测,阐明了土壤呼吸作用的空间异质性特征,综合分析了水热因子、土壤性质、根系生物量及其测定位置对土壤呼吸作用空间异质性的影响,并对生长季中根系呼吸作用占土壤呼吸作用的比例进行了估算。结果表明,在植株尺度上,土壤呼吸作用存在着明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。在空间尺度上,土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季中,根系呼吸作用占土壤呼吸作用的比例在43.1%~63.6%之间波动,均值为54.5%。  相似文献   

7.
应用地统计学方法,研究了群落尺度上陕北黄土丘陵区不同演替阶段猪毛蒿、长芒草和达乌里胡枝子3种撂荒群落土壤全氮、全磷和地上生物量的空间异质性.利用基于距离矩阵的Mantel偏相关方法分析了群落地上生物量与土壤全氮、全磷在不同尺度上的相互关系,分析了土壤全氮、全磷及群落自身的空间过程对群落地上生物量空间分布的解释程度.结果表明:(1)猪毛蒿、长芒草和达乌里胡枝子3种群落土壤全氮含量空间自相关性较差,而全磷自相关性较好,不同深度的土壤全氮含量其空间异质性大小也有所差别.3种群落0~20cm全氮的空间变异性大小为:达乌里胡枝子〉长芒草〉猪毛蒿群落;20~40cm为:长芒草〉达乌里胡枝子〉猪毛蒿群落.即土壤表层全氮含量为撂荒年限越长空间变异性越大,而亚表层全氮含量则是演替中期空间异质性较大,演替前后期较小.3种群落0~20cm、20~40cm全磷含量也是演替中期空间异质性较大,而前后期较小.(2)3种群落地上生物量空间自相关性以长芒草群落为最小,并且空间异质性大小为猪毛蒿〉达乌里胡枝子〉长芒草群落;猪毛蒿群落地上生物量与土壤全氮在小尺度上(0.71m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51m尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上(0.71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上(0.71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上(0.71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上( .71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上( .71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上( .71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上( .71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在各个尺度上都不显著,只在小尺度上与全氮负相关性较好.(3)土壤氮和磷,对达乌里胡枝子群落地上生物量的解释较好,约为19.59%,猪毛蒿次之,长芒草群落最小.群落本身的空间过程对猪毛蒿群落的解释程度最高,约为5.42%,其次为达乌里胡枝子,长芒草最小. m)为显著正相关,与全磷相关性也较好,为负相关,在19.80~20.51 尺度上与全磷为显著负相关.达乌里胡枝子群落地上生物量与全磷在7.07~20.51m尺度上为显著正相关,在小尺度上( .71m)正相关性也较好.长芒草群落地上生物量与土壤全氮、全磷相关性在  相似文献   

8.
陇东旱塬苹果根系分布规律及生理特性对地表覆盖的响应   总被引:1,自引:0,他引:1  
为探明陇东旱塬区不同覆盖物对苹果园土壤理化性状、根系分布及根系生理活性的影响,以14年生苹果树为试材,采用土壤剖面分层取样法,调查根系空间分布,并对根系生物量、根长、表面积等进行分析,测定根系活力、抗氧化酶类、活性氧代谢等相关生理指标,同时测定不同深度土层土壤容重、孔隙度等.结果表明: 覆草可有效增大土壤含水量、孔隙度、有机质含量,增幅分别为2.7%~11.6%、3.2%~27.7%、5.1%~36.0%,但土壤容重降低,为清耕(CK)的88.7%~96.4%.CK根系主要分布在距树干30~120 cm范围内的0~60 cm深土层中;覆草、覆膜处理主要分布在距树干0~150 cm、0~60 cm水平范围内的0~100 cm深土层中,以20~40 cm根系最为密集;覆膜处理细根总量仅为CK的96.4%,根系水平分布范围较CK有所减小,0~60 cm内细根占根系总量的51.6%.不同覆盖处理显著增强0~80 cm土层根系活力及抗氧化酶活性,其中覆草处理根系活力为CK的111.3%~136.7%.综合分析根系生长分布与生理活性、土壤理化性状等,认为覆草处理是陇东旱塬区苹果园较为适宜的地表覆盖方式.  相似文献   

9.
不同抗旱性冬小麦根系时空分布与产量的关系   总被引:2,自引:0,他引:2  
方燕  闵东红  高欣  王中华  王军  刘萍  刘霞 《生态学报》2019,39(8):2922-2934
为明确不同抗旱性冬小麦品种(Triticum aestivum L.)根系时空分布及其与产量的关系,以抗旱性品种长武134、长旱58和干旱敏感性品种小偃22、西农979为材料,采用根箱试验研究干旱胁迫和充分供水条件下4个品种在拔节期、开花期和成熟期根系总生物量、总根长密度、根系在表层(0—20 cm)和深层(20 cm以下)土壤中的垂直分布、动态变化及其对产量的影响。结果表明,干旱胁迫下抗旱性品种产量显著高于干旱敏感性品种,其中长旱58产量最高,西农979最低;充分供水条件下,西农979产量最高,长武134最低,长旱58与小偃22之间没有差异。相关分析表明,产量与各生育时期根系性状均有显著关系。多元逐步回归分析的结果显示,干旱胁迫和充分供水条件下,拔节期深层根生物量对产量有正效应,而成熟期总根长密度对产量表现为负效应。通径分析表明,干旱胁迫下,根系性状对产量的直接贡献大小为开花期总根长密度(|0.54|)拔节期深层根生物量(|0.36|)成熟期总根长密度(|-0.31|);充分供水时,成熟期总根长密度(|-1.56|)拔节期深层根生物量(|0.83|)。研究表明,减少成熟期总根长密度,增加拔节期深层根生物量对抗旱性及干旱敏感性冬小麦品种产量均有显著的正效应,增加开花期根长密度有利于提高抗旱性冬小麦产量。  相似文献   

10.
不同土壤环境对黄花蒿生长和青蒿素含量的影响研究   总被引:1,自引:1,他引:0  
通过田间小区试验,比较研究了施肥与不施肥条件下,4种土壤环境(沙土、旱地土、水稻土和棕色石灰土)对黄花蒿的生长、生物量分配和青蒿素含量的影响。结果表明:黄花蒿对土壤养分的适应性较强,在沙土、旱地土、水稻土和石灰土上均能生长发育,养分水平低时,分配更多的生物量到根,根生物量分数和根/冠比增大;养分水平高时,分配更多的生物量到叶,叶生物量分数增加。黄花蒿的生长和青蒿素含量显著受土壤养分的影响,不施肥时,石灰土和水稻土栽培黄花蒿的株高、地径、总生物量、叶生物量和青蒿素含量显著大于旱地土,而旱地土又显著大于沙土。但在施肥条件下,以上参数不同土壤间无显著差异,且显著高于不施肥。因此,只要根据土壤养分状况合理施肥,黄花蒿在不同养分土壤栽培均能获得较高的青蒿素产量。  相似文献   

11.

Background and Aims

Facultative root hemiparasitic plants generally have a wide host range, but in most cases show an obvious host preference. The reasons for the marked difference in growth performance of hemiparasites when attached to different hosts are not fully understood. In this study, the hypothesis was tested that hemiparasites showing a preference for different hosts have different nutrient requirements.

Methods

Two facultative root hemiparasitic Pedicularis species (P. rex and P. tricolor) with a different host dependency and preference were used to test their responses to inorganic solutes. The effects of nitrogen, phosphorus and potassium on growth of the hemiparasitic plants not attached to a host were determined, using an orthogonal design in pot cultivation under greenhouse conditions. Variables including biomass, shoot nutrient concentration, root:shoot (R:S) ratios and the number of haustoria were measured.

Key Results

As in autotrophic plants, nutrient deficiency reduced dry weight (DW) and nutrient concentrations in the root hemiparasites. Nitrogen and phosphorus significantly influenced growth of both Pedicularis species, while potassium availability influenced only shoot DW of P. rex. Nitrogen had far more effect on growth of P. rex than on P. tricolor, while phosphorus deficiency caused more marked growth depression in P. tricolor than in P. rex. Pedicularis rex grew faster than P. tricolor in a range of nutrient supplies. Different patterns of biomass allocation between the two Pedicularis species were observed. While P. rex invested more into roots (particularly fine rootlets) than P. tricolor, the number of haustoria produced by P. rex was relatively much lower than that produced by P. tricolor, which had a much smaller root system.

Conclusions

The two Pedicularis species differ in nutrient requirements and biomass allocation. Distinct interspecific traits in growth and nutrient requirements can be driving forces for the differential interactions between hemiparasites and their hosts.  相似文献   

12.
There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter‐ and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow‐release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species’ competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.  相似文献   

13.
Summary The concentration, uptake and element use efficiency of N, P and K in one C3 annual (Polypogon monspeliensis) and two C4 (Echinochloa colonum, an annual, andDichathium annulatum, a perennial) grasses were determined during winter and summer seasons in monocultures raised in field plots at three moisture levels,viz. full, half and one-fourth of field capacity. At each moisture regime the plants were clipped thrice at moderate and severe levels corresponding to 40 and 80% of live green. The concentration of these elements was characteristic of the growth habit of these plants;e.g. the build up of concentration was maximum in leaf of the annuals while it was comparable in crown and leaf of Dichanthium. The N level was maximum in Polypogon. The nutrient use effiency was comparable in the two annuals and maximum K and N use were obtained in Polypogon and Dichanthium, respectively.  相似文献   

14.
The interaction between parasitic plants and their hosts is an important topic in both agriculture and ecology. Little, however, is known about that of the hemiparasite Pedicularis. It is essential to understand the host dependence and preference of Pedicularis for successful cultivation of plants in this genus and for understanding the roles they play in natural communities. We tested the effects of two herbaceous host species (Trifolium repens and Polypogon monspeliensis) on the survival and growth performance of Pedicularis cephalantha. Five P. cephalantha seedlings and two host plants were planted in each pot. In the control, no host plants were planted (treatment 1). Host plants were planted in three combinations: only T. repens (treatment 2) or P. monspeliensis (treatment 3) or a mixture of both (treatment 4). The results showed that P. cephalantha performed better in the presence of host plants, and host plants are more essential to P. cephalantha for proper development than for survival. The grass host P. monspeliensis proved to be a better host plant for P. cephalantha than the legume host T. repens. The high dependence of P. cephalantha on host plants and its host preference were demonstrated in this study. This is the first report of the performance of Chinese Pedicularis species in cultivation throughout all life stages (from seeds to seeds).  相似文献   

15.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

16.
We examined the above- and below-ground responses of seedlings of the woody shrub Prosopis glandulosa to the spatial heterogeneity of soil nutrients within the root zone. We performed a microcosm experiment where seedlings were grown with different combinations of nutrients [nitrogen (N), phosphorus (P), and both combined (NP)] and under different levels of nutrient heterogeneity (nutrients supplied as patches located in the bottom and/or upper portion of rooting zone versus homogeneous distribution). Seedling morphology and biomass did not show a strong response to changes in nutrient ion or spatial heterogeneity. Height, number of leaves, and specific leaf area did not vary significantly between treatments. The number of leaves, foliar biomass, stem biomass and biomass allocation to stems of seedlings showed more responsiveness to the addition of N and NP than to the addition of P. The spatial heterogeneity of nutrients affected the diameter, root biomass and leaf N content. Seedlings had higher diameter and root biomass when the nutrients were homogeneously distributed as compared to their placement as patches in the bottom of the microcosms. Their leaf N concentration increased in those treatments where the nutrient patch was located in the lower half as compared to the upper half of the microcosms. Root foraging responses to nutrient patches varied with their location. Significant root proliferation was observed when patches of N, P and NP were located in the upper portion of the rooting zone; when they were located in the lower portion such a response was observed only for P. Despite our findings that Prosopis seedlings have a low overall responsiveness to small-scale vertical differences in soil nutrient heterogeneity, our results suggest that these differences may modify the growth dynamics of the secondary roots of this ecologically important dryland species during the early stages of its development.  相似文献   

17.
Despite their difference in potential growth rate, the slow-growing Brachypodium pinnatum and the fast-growing Dactylis glomerata co-occur in many nutrient-poor calcareous grasslands. They are known to respond differently to increasing levels of N and P. An experiment was designed to measure which characteristics are affected by nutrient supply and contribute to the ecological performance of these species. Nutrient acquisition and root and shoot traits of these grasses were studied in a garden experiment with nine nutrient treatments in a factorial design of 3 N and 3 P levels each. D. glomerata was superior to B. pinnatum in nutrient acquisition and growth in all treatments. B. pinnatum was especially poor in P acquisition. Both species responded to increasing N supply and to a lesser extent to increasing P supply by decreasing their root length and increasing their leaf area per total plant weight. D. glomerata showed a higher plasticity. In most treatments, the root length ratio (RLR) and the leaf area ratio (LAR) were higher for D. glomerata. A factorization of these parameters into components expressing biomass allocation, form (root fineness or leaf thickness) and density (dry matter content) shows that the low density of the biomass of D. glomerata was the main cause for the higher RLR and LAR. The biomass allocation to the roots showed a considerable plasticity but did not differ between the species. B. pinnatum had the highest leaf weight ratio. Root fineness was highly plastic in D. glomerata, the difference with B. pinnatum being mainly due to the thick roots of D. glomerata at high nutrient supply. The leaf area/leaf fresh weight ratio did not show any plasticity and was slightly higher for B. pinnatum. It is concluded, that the low density of the biomass of D. glomerata is the pivotal trait responsible for its faster growth at all nutrient levels. It enables simultaneously a good nutrient acquisition capacity by the roots as well as a superior carbon acquisition by the leaves. The high biomass density of B. pinnatum will then result in a lower nutrient requirement due to a slower turnover, which in the long term is advantageous under nutrient-poor conditions.  相似文献   

18.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

19.
Carbon cost of root systems: an architectural approach   总被引:16,自引:2,他引:14  
Root architecture is an important component of nutrient uptake and may be sensitive to carbon allocational changes brought about by rising CO2. We describe a deformable geometric model of root growth, SimRoot, for the dynamic morphological and physiological simulation of root architectures. Using SimRoot, and measurements of root biomass deposition, respiration and exudation, carbon/phosphorus budgets were developed for three contrasting root architectures. Carbon allocation patterns and phosphorus acquisition efficiencies were estimated for Phaseolus vulgaris seedlings with either a dichotomous, herringbone, or empirically determined bean root architecture. Carbon allocation to biomass, respiration, and exudation varied significantly among architectures. Root systems also varied in the relationship between C expenditure and P acquisition, providing evidence for the importance of architecture in nutrient acquisition efficiency.  相似文献   

20.
Two experiments have been conducted, one in semi-solid Hoagland nutrient medium and the other in shallow pots containing saline soil. N2-fixing bacteria belonging toAzospirillum, Azotobacter, Klebsiella andEnterobacter were inoculated separately on kallar grass grown in semi-solid nutrient medium. It was shown that inoculation affects root proliferation and also results in15N isotopic dilution. The % Ndfa ranged from 47–70 whereas no significant effect on the total nitrogen uptake was observed. The bacterial colonization of the root surface and the presence of enteric bacteria inside the root hair cells is reported. In a soil pot experiment, non-N2-fixingPolypogon monspeliensis was used as a reference plant (control). A treatment receiving a high rate of nitrogen was also used as a non-N2-fixing control.15N-labelled ammonium sulphate at 20 kg N ha–1 and 90 kg N ha–1 was used. The % Ndfa in the aerial parts of kallar grass was 12–15 whenP. monspeliensis was used as reference plant whereas 37–39% Ndfa was estimated when the treatment receiving high nitrogen fertilizer was used as a non-N2-fixing control. These investigations revealed some problems of methodology which are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号