首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.
One hundred and six skulls of various species of apes and monkeys were examined for the presence of cribra orbitalia. The condition was found in 15 (14.1%) of the animals. As in humans, cribra orbitalia was found localized mainly in the anterior parts of the orbital roof and appeared more frequently in infants and young animals. Only mild degrees of cribra orbitalia, i.e., the porotic type of lesions, were found in this series of animal skulls studied. More advanced degrees of development, as observed in human skulls, were not found. The etiology of the condition is not known; some type of nutritional deficiency is considered to be the most likely cause. The occurrence of cribra orbitalia in animals opens up possibilities of experimental work on the subject and may help to solve the problems of its etiology.  相似文献   

2.
Serum samples from 245 apes (184 Pan troglodytes, five Pan paniscus, 28 Gorilla gorilla, 23 Pongo pygmaeus abelei, and five Pongo pygmaeus pygmaeus) were tested for G1m (1,2,3,17), G2m (23), and G3m (5,6,10,11,13,14,15,16,21,24,28) immunoglobulin allotypes by the classical method of inhibition of hemagglutination. Some phenotypes are species specific while a few are shared by man and African apes.  相似文献   

3.

Objectives

We test the hypothesis that the condition(s) leading to the development of cribra orbitalia at Con Co Ngua, an early seventh millennium sedentary foraging community in Vietnam, effectively reduced the resilience of the population to subsequent health/disease impacts. An assessment of both the implications and potential etiology of cribra orbitalia in this specific population is carried out.

Methods

The effective sample included 141 adults aged ≥15 years (53 females, 71 males, and 17 unknown sex) and 15 pre-adults aged ≤14 years. Cribra orbitalia was identified by way of cortical bone porosity of the orbital roof initiated within the diplöic space, rather than initiated subperiosteally. The approach is also robust to the misidentification of various pseudo-lesions. Resultant data was analyzed using Kaplan–Meier survival analysis.

Results

Median survival is higher in adults aged ≥15 years without cribra orbitalia than those with this lesion. For the pre-adult cohort, the opposite pattern is seen where median survival is higher in those with cribra orbitalia than those without.

Conclusion

Adults displayed increased frailty and pre-adults increased resilience with respect to cribra orbitalia. The differential diagnosis for a survival analysis of adults and pre-adults with and without cribra orbitalia included iron deficiency anemia and B12/folate deficiency, parasitism (including hydatid disease and malaria) in addition to thalassemia. The most parsimonious explanation for observed results is for both thalassemia and malaria being the chief etiological agents, while appreciating these conditions interact with, and can cause, other forms such as hematinic deficiency anemias.
  相似文献   

4.
The two major apolipoproteins associated with human and chimpanzee (Pan troglodytes) high density lipoproteins (HDL) are apoA-I and dimeric apoA-II. Although humans are closely related to great apes, apolipoprotein data do not exist for bonobos (Pan paniscus), western lowland gorillas (Gorilla gorilla gorilla) and the Sumatran orangutans (Pongo abelii). In the absence of any data, other great apes simply have been assumed to have dimeric apoA-II while other primates and most other mammals have been shown to have monomeric apoA-II. Using mass spectrometry, we have measured the molecular masses of apoA-I and apoA-II associated with the HDL of these great apes. Each was observed to have dimeric apoA-II. Being phylogenetically related, one would anticipate these apolipoproteins having a high percentage of invariant sequences when compared with human apolipoproteins. However, the orangutan, which diverged from the human lineage between 16 and 21 million years ago, had an apoA-II with the lowest monomeric mass, 8031.3 Da and the highest apoA-I value, 28,311.7 Da, currently reported for various mammals. Interestingly, the gorilla that diverged from the lineage leading to the human–chimpanzee branch after the orangutan had almost identical mass values to those reported for human apoA-I and apoA-II. But chimpanzee and the bonobo that diverged more recently had identical apoA-II mass values that were slightly larger than reported for the human apolipoprotein. The chimpanzee A-I mass values were very close to those of humans; however, the bonobo had values intermediate to the molecular masses of orangutan and the other great apes. With the already existing genomic data for chimpanzee and the recent entries for the orangutan and gorilla, we were able to demonstrate a close agreement between our mass spectral data and the calculated molecular weights determined from the predicted primary sequences of the respective apolipoproteins. Post-translational modification of these apolipoproteins, involving truncation and oxidation of methionine, are also reported.  相似文献   

5.
新疆鄯善洋海青铜时代居民眶顶板筛孔样病变的调查   总被引:1,自引:0,他引:1  
张全超  朱泓 《人类学学报》2006,25(2):102-105
本文对新疆鄯善洋海出土的61例(成年个体45例,未成年个体16例)遗骸进行了眶顶板筛孔样病变的观察。在被调查的成年个体中眶顶板筛孔样病变的患病率为44.4%,未成年个体的患病率为75%,且成年个体眶顶板筛孔样病变的患病率性别差异显著。这种病变的高频率现象,很可能与当时单一的饮食结构、低营养水平及不良卫生状况等因素所诱发的缺铁性贫血有关。为深入研究我国新疆地区古代居民眶顶板筛孔样病变的患病率及其发病原因提供了一组基础数据。  相似文献   

6.
Prosocial behaviours such as helping, comforting, or sharing are central to human social life. Because they emerge early in ontogeny, it has been proposed that humans are prosocial by nature and that from early on empathy and sympathy motivate such behaviours. The emerging question is whether humans share these abilities to feel with and for someone with our closest relatives, the great apes. Although several studies demonstrated that great apes help others, little is known about their underlying motivations. This study addresses this issue and investigates whether four species of great apes (Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, Pan paniscus) help a conspecific more after observing the conspecific being harmed (a human experimenter steals the conspecific’s food) compared to a condition where no harming occurred. Results showed that in regard to the occurrence of prosocial behaviours, only orangutans, but not the African great apes, help others when help is needed, contrasting prior findings on chimpanzees. However, with the exception of one population of orangutans that helped significantly more after a conspecific was harmed than when no harm occurred, prosocial behaviour in great apes was not motivated by concern for others.  相似文献   

7.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.  相似文献   

10.
The great apes and gibbons are characterized by extensive variation in degree of body size and cranial dimorphism, but although some studies have investigated how sexual dimorphism in body mass is attained in these species, for the majority of taxa concerned, no corresponding work has explored the full extent of how sexual dimorphism is attained in the facial skeleton. In addition, most studies of sexual dimorphism combine dentally mature individuals into a single “adult” category, thereby assuming that no substantial changes in size or dimorphism take place after dental maturity. We investigated degree and pattern of male and female facial growth in Pan troglodytes troglodytes, Pan paniscus, Gorilla gorilla gorilla, Pongo pygmaeus, and Hylobates lar after dental maturity through cross-sectional analyses of linear measurements and geometric mean values of the facial skeleton and age-ranking of individuals based on molar occlusal wear. Results show that overall facial size continues to increase after dental maturity is reached in males and females of Gorilla gorilla gorilla and Pongo pygmaeus, as well as in the females of Hylobates lar. In male Pongo pygmaeus, adult growth patterns imply the presence of a secondary growth spurt in craniofacial dimensions. There is suggestive evidence of growth beyond dental maturity in the females of Pan troglodytes troglodytes and Pan paniscus, but not in the males of those species. The results show the presence of statistically significant facial size dimorphism in young adults of Pan paniscus and Hylobates lar, and of near statistical significance in Pan troglodytes troglodytes, but not in older adults of those species; adults of Gorilla gorilla gorilla and Pongo pygmaeus are sexually dimorphic at all ages after dental maturity. The presence of sex-specific growth patterns in these hominoid taxa indicates a complex relationship between socioecological selective pressures and growth of the facial skeleton.  相似文献   

11.
Pan paniscus is unique in the group of African apes because of its range south of the Congo River. Examination of the bio-geographical journey of the genus Pan to the species P. paniscus is important when discussing the evolution of African apes. This paper is a review of the paleo-geographic events, the zoogeography, and faunal sorting which influenced P. paniscus divergence from the Proto-pan ancestor within the recent Miocene through Pliocene Epochs, approximately 10–2 MYA. Finally, by elucidating modern day evidence of food plant forms in the southern periphery exploited by P. paniscus in the forest/savanna mosaic habitat, we are able to conclude with those extrinsic events that most influenced the occurrence and distribution of P. paniscus. Electronic Publication  相似文献   

12.
Eight chimpanzees (Pan troglodytes), five bonobos (Pan paniscus), five gorillas (Gorilla gorilla), and seven orangutans (Pongo pygmaeus) were presented with two invisible object displacement tasks. In full view of the subject, a food item was hidden under one of three opaque cups resting on a platform and, after an experimental manipulation, the subject was allowed to select one of the cups. In the rotation task, the platform was rotated 180° while the subject remained stationary. In the translocation task, the platform remained stationary while the subject walked to the opposite side from where she saw the reward being hidden. The final position of the food relative to the subject was equivalent in both tasks. Single displacement trials consisted of only one manipulation, either a rotation or a translocation, whereas double displacement trials consisted of both a rotation and a translocation. We also included no displacement trials in which no displacements took place. No displacement trials were easier than single displacements which, in turn, were easier than double displacements. Unlike earlier studies with children, there was no difference in performance between rotation and translocation displacements. Overall, apes performed above chance in all conditions, but chimpanzees outperformed the other species. This study reinforces the notion that the great apes use an allocentric spatial coding. Am. J. Primatol. 72:349–359, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

14.
Bonobos (Pan paniscus; n = 5), orangutans (Pongo pygmaeus abelii; n = 6), and a gorilla (Gorilla gorilla gorilla; n = 1) were presented with two opaque cups, one empty and one baited (containing two bananas). Subjects had to independently gain weight information about the contents of the cups to find the hidden food. Six apes attained above chance level within a total of 16 trials. Successful subjects spontaneously adopted the method of successively lifting the cups and thus comparing their weight before making a choice. Prior to testing, these apes had participated in a weight discrimination task. To rule out that a subject's good performance was influenced by previous experience in weight experiments, we ran a second test in which the same task was presented to a group of chimpanzees (Pan troglodytes; n = 9) who were naïve to weight experiments. These subjects also participated in an additional test condition in which the same problem was presented based on learning to associate arbitrary visual stimuli. The results show that experience did not affect performance because the nine naïve subjects were equally able to find the food when the task stimuli held a causal relation (i.e. weight indicates the hidden food). Interestingly, only one of the naïve subjects solved the task when the task elements held an arbitrary relation (i.e. certain visual pattern indicates food). Our results confirm previous findings that apes perform better in problems grounded on causal compared to arbitrary relations. Am. J. Primatol. 73:323–334, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Great apes and humans use their hands in fundamentally different ways, but little is known about joint biomechanics and internal bone variation. This study examines the distribution of mineral density in the third metacarpal heads in three hominoid species that differ in their habitual joint postures and loading histories. We test the hypothesis that micro-architectural properties relating to bone mineral density reflect habitual joint use. The third metacarpal heads of Pan troglodytes, Pongo pygmaeus, and Homo sapiens were sectioned in a sagittal plane and imaged using backscattered electron microscopy (BSE-SEM). For each individual, 72 areas of subarticular cortical (subchondral) and trabecular bone were sampled from within 12 consecutive regions of the BSE-SEM images. In each area, gray levels (representing relative mineralization density) were quantified.Results show that chimpanzee, orangutan, and human metacarpal III heads have different gray level distributions. Weighted mean gray levels (WMGLs) in the chimpanzee showed a distinct pattern in which the ‘knuckle-walking’ regions (dorsal) and ‘climbing’ regions (palmar) are less mineralized, interpreted to reflect elevated remodeling rates, than the distal regions. Pongo pygmaeus exhibited the lowest WMGLs in the distal region, suggesting elevated remodeling rates in this region, which is loaded during hook grip hand postures associated with suspension and climbing. Differences among regions within metacarpal heads of the chimpanzee and orangutan specimens are significant (Kruskal–Wallis, p < 0.001). In humans, whose hands are used for manipulation as opposed to locomotion, mineralization density is much more uniform throughout the metacarpal head. WMGLs were significantly (p < 0.05) lower in subchondral compared to trabecular regions in all samples except humans. This micro-architectural approach offers a means of investigating joint loading patterns in primates and shows significant differences in metacarpal joint biomechanics among great apes and humans.  相似文献   

16.
Strongyloides nematodes have been reported in all species of great apes with orangutans ≤5 years old most susceptible to severe clinical disease. This brief communication describes the first published case of antemortem diagnosis and treatment of disseminated strongyloidiasis in a clinically affected 5‐month‐old Sumatran orangutan (Pongo abelii).  相似文献   

17.
The cross-reactivity of five different rabbit polyclonal antibodies to human IgG and IgG subclass (IgG1, IgG2, IgG3, and IgG4) was determined by competitive ELISA with nine nonhuman primate species including five apes, three Old World monkeys, and one New World monkey. As similar to those previously reported, the reactivity of anti-human IgG antibody with plasma from different primate species was closely related with phylogenic distance from human. Every anti-human IgG subclass antibody showed low cross-reactivity with plasma from Old World and New World monkeys. The plasma from all apes except for gibbons (Hylobates spp.) showed 60 to 100% of cross-reactivity with anti-human IgG2 and IgG3 antibodies. On the other hand, chimpanzee (Pan troglodytes andPan paniscus) and orangutan (Pongo pygmaeus) plasma showed 100% cross-reactivity with anti-human IgG1 antibody, but gorilla (Gorilla gorilla) and gibbon plasma showed no cross-reactivity. The chimpanzee and gorilla plasma cross-reacted with anti-human IgG4 antibody at different reactivity, 100% in chimpanzee and 50% in gorilla, but no cross-reactivity was observed in orangutan and gibbon plasma. These results suggest the possibilities that the divergence of “human-type” IgG subclasses might occur at the time of divergence ofHomo sapience fromHylobatidae, and that the molecular evolution of IgG1 as well as IgG4 is different from that of IgG2 and IgG3 in great apes, this is probably caused by different in development of immune function in apes during the course of evolution.  相似文献   

18.
The single previous study on tooth development in great apes (Dean and Wood: Folia Primatol. (Basel) 36:111–127, 1981) is of limited value because it is based on cross-sectional radiographic data. This study considers problems in defining stages of tooth development in radiographs of developing ape dentitions and provides data on tooth chronology in Pongo pygmaeus and Gorilla gorilla by using histological methods of analysis. Crown formation times were estimated in individual teeth, and an overall chronology of dental development was found by registering teeth forming at the same time by using incremental growth lines. The earlier radiographic study correctly identified the molar and second premolar chronology and sequence in great apes, but significantly underestimated crown formation times in incisors, first premolars, and canine teeth in particular. Ape anterior tooth crowns take longer to form than the equivalent human teeth, but the overall dental developmental period in great apes is substantially shorter than in humans. Gorilla root extension rates appear to be fast, up to approximately 13 μm/day. This rapid root growth, associated with early tooth eruption, appears to be the developmental basis for the observed differences in timing between developing dentitions in great apes and humans.  相似文献   

19.
Orangutans are the only great apes found outside of Africa. At present, they occur only on the two large Sunda‐shelf islands of Sumatra and Borneo. Most researchers recognize two separate subspecies, Pongo pygmaeus abelii in Sumatra and P.p. pygmaeus in Borneo.1,2 Relative to other primates, they have a variety of unusual features. These large‐bodied frugivores are among the most solitary of anthropoid primates.3–5 They are also highly dimorphic, with the average body mass (78 kg) of males being more than twice that of females (36 kg).6 Despite its large body size the red ape has more specialized morphological adaptations for arboreality than do the African great apes. Researchers generally recognize sexually mature male orangutans with two physically distinct morphs, a phenomenon described as bimaturism. Males of the relatively smaller morph are known for forcing copulations with adult females.5,7–9.  相似文献   

20.
Olfaction is important across the animal kingdom for transferring information on, for example, species, sex, group membership, or reproductive parameters. Its relevance has been established in primates including humans, yet research on great apes still is fragmentary. Observational evidence indicates that great apes use their sense of smell in various contexts, but the information content of their body odor has not been analyzed. Our aim was therefore to compare the chemical composition of body odor in great ape species, namely Sumatran orangutans (Pongo abelii (Lesson, 1827), one adult male, five adult females, four nonadults), Western lowland gorillas (Gorilla gorilla gorilla (Savage, 1847), one adult male, two adult females, one nonadult), common chimpanzees (Pan troglodytes (Blumenbach, 1775), four adult males, nine adult females, four nonadults), and bonobos (Pan paniscus (Schwarz, 1929), two adult males, four adult females, two nonadults). We collected 195 samples (five per individual) of 39 captive individuals using cotton swabs and analyzed them using gas chromatography mass spectrometry. We compared the sample richness and intensity, similarity of chemical composition, and relative abundance of compounds. Results show that species, age, and potentially sex have an impact on the variance between odor profiles. Richness and intensity varied significantly between species (gorillas having the highest, bonobos the lowest richness and intensity), and with age (both increasing with age). Richness and intensity did not vary between sexes. Odor samples of the same species were more similar to each other than samples of different species. Among all compounds identified some were associated with age (N = 7), sex (N = 6), and species‐related (N = 37) variance. Our study contributes to the basic understanding of olfactory communication in hominids by showing that the chemical composition of body odor varies across species and individuals, containing potentially important information for social communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号