首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In seasonal tropical regions, rainfall and/or temporary floods during the wet season generally increase the abundance and diversity of food resources to many consumers as compared to the dry season. Therefore, seasonality can affect intraspecific competition and ecological opportunity, which are two important ecological mechanisms underlying population and individual niche variations. Here, we took advantage of the strong seasonality in the Pantanal wetlands to investigate how within‐ and between‐individual diet variations relate to seasonal population niche dynamics of the tetra fish Astyanax lacustris. We quantified dietary niche using gut contents and stable isotopes. Tetras had higher gut fullness and better body condition in the wet season, suggesting that competition is more intense in the dry season. The population niche was broader in the wet season due to an increase in diet divergence between individuals, in spite of potential stronger competition in the dry season. We posit that low ecological opportunity in the dry season limits the diversifying effect of intraspecific competition, constraining population niche expansion. Our results add new insights on how seasonality affects population and individual diets, indicating that intraspecific competition and ecological opportunity interact to determine temporal niche variations in seasonal environments.  相似文献   

2.
The dynamics of population niches result from the variation in resource use within individuals and also from the variation between individuals. The prevalence of one mechanism or the other leads to competing hypotheses about the major mechanisms underlying the empirical observations of the contraction/expansion dynamics of the trophic niche in natural populations. In this study, we investigated how within‐ and between‐individual variation in resource use shapes the food niche dynamics of the woolly mouse opossum, Marmosa paraguayana (Didelphimorphia: Didelphidae), in a remnant of the highly seasonal Cerrado in south‐eastern Brazil. To do so, we analysed the faecal samples of live‐trapped individuals to determine their diets within the wet and dry seasons. In addition to a seasonal shift in the composition of the diet, the population trophic niche was significantly wider during the dry season than the wet season. This expansion resulted from larger between‐individual variation in the dry season that was not related to sex preferences, whereas the individual niche widths did not significantly increase from the wet to the dry seasons. Our findings add to the growing list of animal populations that show individual‐level variation in resource use. Furthermore, these results represent a pattern of individual‐level response to seasonal changes that is different from patterns reported for other organisms. We suggest that a pathway to build more realistic foraging models and produce more accurate predictions on population and community dynamics is to consider between‐individual variation and short‐term niche dynamics.  相似文献   

3.
Density‐dependent dynamics have considerable effects in many ecological processes and patterns that characterize natural populations. In the present study, we aim at evaluating the effect of density on the diet width and between‐individual variability in nine different pike cichlid Crenicichla lepidota populations dwelling in floodplain lagoons. Our results indicated that low‐density populations exhibit small diet breadth as well as small between‐individual variability in their diet. In addition, these populations were characterized by a nested diet pattern, where the diet of specialist individuals represented a subset of the food items consumed by generalist individuals. Populations with intermediate densities had a larger populational diet breadth while the individual diet breadth remained unchanged. This pattern was due to an increase in between‐individual variability in diet, which consequently decreases the diet overlap among individuals and thus lower diet nestedness. Finally, under high densities, the niche width at the population level decreased because of lower between‐individual variability and higher diet overlap. Together, these results showed that niche width exhibits a non‐linear function with density. At first, an increase in density increased the niche width because of greater between‐individual diet variability. However, after a threshold density value, the effect was reversed, and the niche width decreased because of a higher diet overlap among individuals.  相似文献   

4.
Ecological diversity has been reported for killer whales (Orcinus orca) throughout the North Atlantic but patterns of prey specialization have remained poorly understood. We quantify interindividual dietary variations in killer whales (n = 38) sampled throughout the year in 2017–2018 in northern Norway using stable isotopic nitrogen (δ15N: 15N/14N) and carbon (δ13C: 13C/12C) ratios. A Gaussian mixture model assigned sampled individuals to three differentiated clusters, characterized by disparate nonoverlapping isotopic niches, that were consistent with predatory field observations: seal‐eaters, herring‐eaters, and lumpfish‐eaters. Seal‐eaters showed higher δ15N values (mean ± SD: 12.6 ± 0.3‰, range = 12.3–13.2‰, n = 10) compared to herring‐eaters (mean ± SD: 11.7 ± 0.2‰, range = 11.4–11.9‰, n = 19) and lumpfish‐eaters (mean ± SD: 11.6 ± 0.2‰, range = 11.3–11.9, n = 9). Elevated δ15N values for seal‐eaters, regardless of sampling season, confirmed feeding at high trophic levels throughout the year. However, a wide isotopic niche and low measured δ15N values in the seal‐eaters, compared to that of whales that would eat solely seals (δN‐measured = 12.6 vs. δN‐expected = 15.5), indicated a diverse diet that includes both fish and mammal prey. A narrow niche for killer whales sampled at herring and lumpfish seasonal grounds supported seasonal prey specialization reflective of local peaks in prey abundance for the two fish‐eating groups. Our results, thus, show differences in prey specialization within this killer whale population in Norway and that the episodic observations of killer whales feeding on prey other than fish are a consistent behavior, as reflected in different isotopic niches between seal and fish‐eating individuals.  相似文献   

5.
Understanding the role of interspecific interactions in shaping ecological communities is one of the central goals in community ecology. In fungal communities, measuring interspecific interactions directly is challenging because these communities are composed of large numbers of species, many of which are unculturable. An indirect way of assessing the role of interspecific interactions in determining community structure is to identify the species co‐occurrences that are not constrained by environmental conditions. In this study, we investigated co‐occurrences among root‐associated fungi, asking whether fungi co‐occur more or less strongly than expected based on the environmental conditions and the host plant species examined. We generated molecular data on root‐associated fungi of five plant species evenly sampled along an elevational gradient at a high arctic site. We analysed the data using a joint species distribution modelling approach that allowed us to identify those co‐occurrences that could be explained by the environmental conditions and the host plant species, as well as those co‐occurrences that remained unexplained and thus more probably reflect interactive associations. Our results indicate that not only negative but also positive interactions play an important role in shaping microbial communities in arctic plant roots. In particular, we found that mycorrhizal fungi are especially prone to positively co‐occur with other fungal species. Our results bring new understanding to the structure of arctic interaction networks by suggesting that interactions among root‐associated fungi are predominantly positive.  相似文献   

6.
The scale‐eating cichlid fish Perissodus microlepis is a textbook example of bilateral asymmetry due to its left or right‐bending heads and of negative frequency‐dependent selection, which is proposed to maintain this stable polymorphism. The mechanisms that underlie this asymmetry remain elusive. Several studies had initially postulated a simple genetic basis for this trait, but this explanation has been questioned, particularly by reports observing a unimodal distribution of mouth shapes. We hypothesize that this unimodal distribution might be due to a combination of genetic and phenotypically plastic components. Here, we expanded on previous work by investigating a formerly identified candidate SNP associated to mouth laterality, documenting inter‐individual variation in feeding preference using stable isotope analyses, and testing their association with mouth asymmetry. Our results suggest that this polymorphism is influenced by both a polygenic basis and inter‐individual non‐genetic variation, possibly due to feeding experience, individual specialization, and intraspecific competition. We introduce a hypothesis potentially explaining the simultaneous maintenance of left, right, asymmetric and symmetric mouth phenotypes due to the interaction between diverse eco‐evolutionary dynamics including niche construction and balancing selection. Future studies will have to further tease apart the relative contribution of genetic and environmental factors and their interactions in an integrated fashion.  相似文献   

7.
8.
9.
Niche expansion and shifts are involved in the response and adaptation to environmental changes. However, it is unclear how niche breadth evolves and changes toward higher‐quality resources. Myotis pilosus is both an insectivore and a piscivore. We examined the dietary composition and seasonality in M. pilosus and the closely related Myotis fimbriatus using next‐generation DNA sequencing. We tested whether resource variation or resource partitioning help explain the dietary expansion from insects to fish in M. pilosus. While diet composition and diversity varied significantly between summer and autumn, the proportion of fish‐eating individuals did not significantly change between seasons in M. pilosus. Dietary overlap between M. pilosus and M. fimbriatus during the same seasons was much higher than within individual species across seasons. We recorded a larger body size, hind foot length, and body mass in M. pilosus than in M. fimbriatus and other insectivorous trawling bats from China. Similar morphological differences were found between worldwide fishing bats and nonfishing trawling bats. Our results suggest that variation in insect availability or interspecific competition may not play important roles in the dietary expansion from insects to fish in M. pilosus. Myotis pilosus has morphological advantages that may help it use fish as a diet component. The morphological advantage promoting dietary niche evolution toward higher quality resources may be more important than variation in the original resource and the effects of interspecific competition.  相似文献   

10.
11.
Individual diet specialisation (IS) is frequent in many animal taxa and affects population and community dynamics. The niche variation hypothesis (NVH) predicts that broader population niches should exhibit greater IS than populations with narrower niches, and most studies that examine the ecological factors driving IS focus on intraspecific competition. We show that phenotypic plasticity of traits associated with functional trade‐offs is an important, but unrecognised mechanism that promotes and maintains IS. We measured nitrogen isotope (δ15N) and digestive enzyme plasticity in four populations of sparrows (Zonotrichia capensis) to explore the relationship between IS and digestive plasticity. Our results show that phenotypic plasticity associated with functional trade‐offs is related in a nonlinear fashion with the degree of IS and positively with population niche width. These findings are opposite to the NVH and suggest that among individual differences in diet can be maintained via acclimatisation and not necessarily require a genetic component.  相似文献   

12.
The relationship between biodiversity and productivity has stimulated an increasing body of research over the past decades, and this topic still occupies a central place in ecology. While most studies have focused on biomass production in quadrats or plots, few have investigated the scale‐dependent relationship from an individual plant perspective. We present an analysis of the effects of biodiversity (species diversity and functional diversity) on individual tree growth with a data set of 16,060 growth records from a 30‐ha temperate forest plot using spatially explicit individual tree‐based methods. A significant relationship between species diversity and tree growth was found at the individual tree level in our study. The magnitude and direction of biodiversity effects varies with the spatial scale. We found positive effects of species diversity on tree growth at scales exceeding 9 m. Individual tree growth rates increased when there was a greater diversity of species in the neighborhood of the focal tree, which provides evidence of a niche complementarity effect. At small scales (3–5 m), species diversity had negative effects on tree growth, suggesting that competition is more prevalent than complementarity or facilitation in these close neighborhoods. The results also revealed many confounding factors which influence tree growth, such as elevation and available sun light. We conclude that the use of individual tree‐based methods may lead to a better understanding of the biodiversity‐productivity relationship in forest communities.  相似文献   

13.
Individual specialization can influence important ecological and evolutionary traits and both inter‐ and intra‐individual variation in resource use can drive niche shifts in natural populations. We evaluated the predominance of these two factors for determining seasonal differences in the trophic niche of the didelphid marsupial Gracilinanus agilis (Burmeister, 1854) in the highly seasonal Brazilian savanna. In the three sampled sites, the population of G. agilis increased its dietary niche width in the warm–wet season, when food resources are more abundant, and there were no differences between sexes and no interaction between season and sex. However, the evaluation of intra‐individual variation indicated that females reduce the number of items consumed during the warm–wet season, whereas males show no seasonal differences. Inter‐individual variation nonetheless followed the overall population pattern because both sexes increased their spread with respect to food‐item consumption in the warm–wet season. Additionally, we found positive relationships between body length and diet only in the warm–wet season, when larger animals fed more on invertebrates and less on fruits than the small ones. Our results show a previously unknown pattern for mammals, in which the trophic niche is wider during the high‐resource season as a result of inter‐individual variation along the body‐size axis. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 737–747.  相似文献   

14.
While intra‐population variability in resource use is ubiquitous, little is known of how this measure of niche diversity varies in space and its role in population dynamics. Here we examined how heterogeneous breeding environments can structure intra‐population niche variation in both resource use and reproductive output. We investigated intra‐population niche variation in the Arctic tundra ecosystem, studying peregrine falcon (Falco peregrinus tundrius, White) breeding within a terrestrial‐marine gradient near Rankin Inlet, Nunavut, Canada. Using stable isotope analysis, we found that intra‐population niches varied at the individual level; we examined within‐nest and among‐nest variation, though only the latter varied along the terrestrial‐marine gradient (i.e., increased among‐nest variability among birds nesting within the marine environment, indicating higher degree of specialization). Terrestrial prey species (small herbivores and insectivores) were consumed by virtually all falcons. Falcons nesting within the marine environment made use of marine prey (sea birds), but depended heavily on terrestrial prey (up to 90% of the diet). Using 28‐years of peregrine falcon nesting data, we found a positive relationship between the proportion of terrestrial habitat surrounding nest sites and annual nestling production, but no relationship with the likelihood of successfully rearing at least one nestling reaching 25 days old. Annually, successful inland breeders raised 0.47 more young on average compared to offshore breeders, which yields potential fitness consequences for this long‐living species. The analyses of niche and reproductive success suggest a potential breeding cost for accessing distant terrestrial prey, perhaps due to additional traveling costs, for those individuals with marine nest site locations. Our study indicates how landscape heterogeneity can generate proximate (niche variation) and ultimate (reproduction) consequences on a population of generalist predator. We also show that within‐individual and among‐individual variation are not mutually exclusive, but can simultaneously arise and structure intra‐population niche variation.  相似文献   

15.
16.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior—social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication—were examined in 2 widely used behavioral tasks—the 3‐chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54‐0.66) and anxiety‐like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome‐wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception—partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety‐like traits. In addition, a highly heritable and ethological domain of affiliative sociability—partner sniffing—appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability.  相似文献   

18.
Dietary habits and trophic‐guild structure were examined in a fish assemblage (47 species) of the Chesapeake Bay estuary, U.S.A., using 10 years of data from >25 000 fish stomachs. The assemblage was comprised of 10 statistically significant trophic guilds that were principally differentiated by the relative amounts of Mysida, Bivalvia, Polychaeta, Teleostei and other Crustacea in the diets. These guilds were broadly aggregated into five trophic categories: piscivores, zooplanktivores, benthivores, crustacivores and miscellaneous consumers. Food web structure was largely dictated by gradients in habitat (benthic to pelagic) and prey size. Size classes within piscivorous species were more likely to be classified into different guilds, reflecting stronger dietary changes through ontogeny relative to benthivores and other guilds. Relative to predator species and predator size, the month of sampling had negligible effects on dietary differences within the assemblage. A majority of sampled fishes derived most of their nutrition from non‐pelagic prey sources, suggesting a strong coupling of fish production to benthic and demersal food resources. Mysida (predominantly the opossum shrimp Neomysis americana) contributed substantially to the diets of over 25% of the sampled predator groups, indicating that this species is a critical, but underappreciated, node in the Chesapeake Bay food web.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号