首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compelling evidence indicates that type 2 diabetes mellitus, insulin resistance (IR), and metabolic syndrome are often accompanied by cognitive impairment. However, the mechanistic link between these metabolic abnormalities and CNS dysfunction requires further investigations. Here, we evaluated whether adipose tissue IR and related metabolic alterations resulted in CNS changes by studying synapse lipid composition and function in the adipocyte‐specific ecto‐nucleotide pyrophosphate phosphodiesterase over‐expressing transgenic (AtENPP1‐Tg) mouse, a model characterized by white adipocyte IR, systemic IR, and ectopic fat deposition. When fed a high‐fat diet, AtENPP1‐Tg mice recapitulate essential features of the human metabolic syndrome, making them an ideal model to characterize peripherally induced CNS deficits. Using a combination of gas chromatography and western blot analysis, we found evidence of altered lipid composition, including decreased phospholipids and increased triglycerides (TG) and free fatty acid in hippocampal synaptosomes isolated from high‐fat diet‐fed AtENPP1‐Tg mice. These changes were associated with impaired basal synaptic transmission at the Schaffer collaterals to hippocampal cornu ammonis 1 (CA1) synapses, decreased phosphorylation of the GluN1 glutamate receptor subunit, down‐regulation of insulin receptor expression, and up‐regulation of the free fatty acid receptor 1.

  相似文献   


2.
Aging usually involves the progressive development of certain illnesses, including diabetes and obesity. Due to incapacity to form new white adipocytes, adipose expansion in aged mice primarily depends on adipocyte hypertrophy, which induces metabolic dysfunction. On the other hand, brown adipose tissue burns fatty acids, preventing ectopic lipid accumulation and metabolic diseases. However, the capacity of brown/beige adipogenesis declines inevitably during the aging process. Previously, we reported that DNA demethylation in the Prdm16 promoter is required for beige adipogenesis. DNA methylation is mediated by ten–eleven family proteins (TET) using alpha‐ketoglutarate (AKG) as a cofactor. Here, we demonstrated that the circulatory AKG concentration was reduced in middle‐aged mice (10‐month‐old) compared with young mice (2‐month‐old). Through AKG administration replenishing the AKG pool, aged mice were associated with the lower body weight gain and fat mass, and improved glucose tolerance after challenged with high‐fat diet (HFD). These metabolic changes are accompanied by increased expression of brown adipose genes and proteins in inguinal adipose tissue. Cold‐induced brown/beige adipogenesis was impeded in HFD mice, whereas AKG rescued the impairment of beige adipocyte functionality in middle‐aged mice. Besides, AKG administration up‐regulated Prdm16 expression, which was correlated with an increase of DNA demethylation in the Prdm16 promoter. In summary, AKG supplementation promotes beige adipogenesis and alleviates HFD‐induced obesity in middle‐aged mice, which is associated with enhanced DNA demethylation of the Prdm16 gene.  相似文献   

3.
Objective: To investigate stearoyl‐coenzyme A desaturase (SCD) 1 expression in obesity‐prone C57BL/6 mice and in obesity‐resistant FVB mice to explore the relationship of SCD1 expression and susceptibility to diet‐induced obesity. Research Methods and Procedures: Nine‐week‐old C57BL/6 and FVB mice were fed either a high‐ or low‐fat diet for 8 weeks. Body weight and body composition were measured before and at weeks 4 and 8 of the study. Energy expenditure was measured at weeks 1 and 5 of the study. Hepatic SCD1 mRNA was measured at 72 hours and at the end of study. Plasma leptin and insulin concentrations were measured at the end of study. Results: When C57BL/6 mice were switched to a calorie‐dense high‐fat diet, animals gained significantly more body weight than those maintained on a low‐calorie density diet primarily due to increased fat mass accretion. Fat mass continued to accrue throughout 8 weeks of study. Increased calorie intake did not account for all weight gain. On the high‐fat diet, C57BL/6 mice decreased their energy expenditure when compared with mice fed a low‐fat diet. In response to 8 weeks of a high‐fat diet, SCD1 gene expression in liver increased >2‐fold. In contrast, feeding a high‐fat diet did not change body weight, energy expenditure, or SCD1 expression in FVB mice. Discussion: Our study showed that a high‐fat hypercaloric diet increased body adiposity first by producing hyperphagia and then by decreasing energy expenditure of mice susceptible to diet‐induced obesity. Consumption of a high‐fat diet in species predisposed to obesity selectively increased SCD1 gene expression in liver.  相似文献   

4.
Objective: To determine effects of dietary fat content on vascular responses in different conduit arteries in mice. Methods and Procedures: Vascular responses to reactive oxygen species (ROS)/hydroxyl radical (·OH), acetylcholine (ACh), endothelin‐1 (ET‐1), and angiotensin II (Ang II) were determined in carotid and femoral arteries of C57BL/6J mice fed with diets varying in fat content (low fat (LF), 12.3%; high fat (HF), 41%; and very high fat (VHF), 58% (kcal from fat)) for 15 weeks, beginning at 4 weeks of age. Results: In precontracted rings of carotid and femoral artery, ROS/·OH‐induced a rapid, transient vasodilation. In the carotid, but not in femoral artery, ROS/·OH‐induced dilation increased with increasing dietary fat intake (P < 0.05 vs. LF diet), while contractile responses to ROS/·OH remained unaffected. In femoral arteries, ROS/·OH‐induced contractions were reversed into relaxations after both HF and VHF diet (P < 0.05 vs. LF diet). Both ET‐1 and Ang II induced strong contractions in the femoral artery that were unaffected by dietary fat intake. In contrast, in the carotid artery Ang II–induced contraction was attenuated after HF and VHF diets (P < 0.005 vs. LF diet), whereas ET‐1‐induced vasoconstriction was significantly increased (P < 0.05 VHF vs. LF and HF). Treatment with VHF diet enhanced ACh‐mediated endothelium‐dependent relaxation only in the femoral artery (P < 0.05 vs. HF). Discussion: These findings demonstrate that dietary fat content has regional and distinct effects on vascular function in different vascular beds. The data also suggest the possibility that in selected conduit arteries ROS‐dependent vasodilator mechanisms become activated in response to increased dietary fat intake.  相似文献   

5.
Objective: To determine whether altered dietary essential fatty acid (linoleic and arachidonic acid) concentrations alter sensitivity to conjugated linoleic acid (CLA)‐induced body fat loss or DNA fragmentation. Research Methods and Procedures: Mice were fed diets containing soy oil (control), coconut oil [essential fatty acid deficient (EFAD)], or fish oil (FO) for 42 days, and then diets were supplemented with a mixture of CLA isomers (0.5% of the diet) for 14 days. Body fat index, fat pad and liver weights, DNA fragmentation in adipose tissue, and fatty acid profiles of adipose tissue were determined. Results: The EFAD diet decreased (p < 0.05) linoleic and arachidonic acid in mouse adipose tissue but did not affect body fat. Dietary CLA caused a reduction (p < 0.05) in body fat. Mice fed the EFAD diet and then supplemented with CLA exhibited a greater reduction (p < 0.001) in body fat (20.21% vs. 6.94% in EFAD and EFAD + CLA‐fed mice, respectively) compared with mice fed soy oil. Dietary FO decreased linoleic acid and increased arachidonic acid in mouse adipose tissue. Mice fed FO or CLA were leaner (p < 0.05) than control mice. FO + CLA‐fed mice did not differ in body fat compared with FO‐fed mice. Adipose tissue apoptosis was increased (p < 0.001) in CLA‐supplemented mice and was not affected by fat source. Discussion: Reductions in linoleic acid concentration made mice more sensitive to CLA‐induced body fat loss only when arachidonic acid concentrations were also reduced. Dietary essential fatty acids did not affect CLA‐induced DNA fragmentation.  相似文献   

6.
7.
Dietary trans‐fatty acids are associated with increased risk of cardiovascular disease and have been implicated in the incidence of obesity and type 2 diabetes mellitus (T2DM). It is established that high‐fat saturated diets, relative to low‐fat diets, induce adiposity and whole‐body insulin resistance. Here, we test the hypothesis that markers of an obese, prediabetic state (fatty liver, visceral fat accumulation, insulin resistance) are also worsened with provision of a low‐fat diet containing elaidic acid (18:1t), the predominant trans‐fatty acid isomer found in the human food supply. Male 8‐week‐old Sprague–Dawley rats were fed a 10% trans‐fatty acid enriched (LF‐trans) diet for 8 weeks. At baseline, 3 and 6 weeks, in vivo magnetic resonance spectroscopy (1H‐MR) assessed intramyocellular lipid (IMCL) and intrahepatic lipid (IHL) content. Euglycemic–hyperinsulinemic clamps (week 8) determined whole‐body and tissue‐specific insulin sensitivity followed by high‐resolution ex vivo 1H‐NMR to assess tissue biochemistry. Rats fed the LF‐trans diet were in positive energy balance, largely explained by increased energy intake, and showed significantly increased visceral fat and liver lipid accumulation relative to the low‐fat control diet. Net glycogen synthesis was also increased in the LF‐trans group. A reduction in glucose disposal, independent of IMCL accumulation was observed in rats fed the LF‐trans diet, whereas in rats fed a 45% saturated fat (HF‐sat) diet, impaired glucose disposal corresponded to increased IMCLTA. Neither diet induced an increase in IMCLsoleus. These findings imply that trans‐fatty acids may alter nutrient handling in liver, adipose tissue, and skeletal muscle and that the mechanism by which trans‐fatty acids induce insulin resistance differs from diets enriched with saturated fats.  相似文献   

8.
Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity‐associated renal injury are recognized to at least involve a lipid‐rich and pro‐inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide‐induced innate immunity response and inflammation. We suggested that obesity‐associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild‐type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF‐κB and MAPKs. This HFD‐induced renal injury profile was not observed in KO mice or L6H21‐treated mice. Mice given PA mimmicked the HFD‐induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA‐induced inflammation. MD2 is causally related with obesity‐associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity‐associated kidney diseases.  相似文献   

9.
Objective: To determine whether the major ovarian factor estrogen modulates peroxisome proliferator‐activated receptor (PPAR) α actions on obesity and to investigate the mechanism by which estrogen regulates PPARα actions. Research Methods and Procedures: Female ovariectomized mice were randomly divided into four groups (n = 8/group). After they were treated with combinations of high fat, fenofibrate (FF), or 17β‐estradiol (E) for 13 weeks, variables and determinants of obesity and lipid metabolism were measured using in vivo and in vitro approaches. Results: When female ovariectomized mice were given a high‐fat diet with either FF or E, body weight gain and white adipose tissue mass were significantly reduced and serum lipid profiles were improved compared with control mice fed a high‐fat diet alone. When mice were concomitantly treated with FF and E, however, E reversed the effects of FF on body weight gain, serum lipid profiles, and hepatic PPARα target gene expression. Consistent with the in vivo data, E not only decreased basal levels of PPARα reporter gene activation but also significantly decreased Wy14,643‐induced luciferase reporter activity. In addition, inhibition of PPARα functions by E did not seem to occur by interfering with the DNA binding of PPARα. Discussion: Our results demonstrate that in vivo and in vitro treatment of estrogen inhibited the actions of FF‐activated PPARα on obesity and lipid metabolism through changes in the expression of PPARα target genes, providing evidence that FF does not regulate obesity in female mice with functioning ovaries.  相似文献   

10.
Objective: We examined the gene expression of macrophage‐colony stimulating factor (M‐CSF) in mice with diet‐induced obesity and in genetically obese mice. We also examined the effect of decreased M‐CSF signaling on the susceptibility to obesity and macrophage recruitment into the adipose tissue of mice. Research Methods and Procedures: The adipose tissue from mice with diet‐induced obesity, obese KKAy mice, and ob/ob obese mice was used for RNA preparation. Production of M‐CSF and monocyte chemoattractant protein‐1 (MCP‐1) was examined by quantitative real‐time polymerase chain reaction (PCR) and enzyme‐linked immunosorbent assay. The op/+ heterozygous mice, with decreased functional M‐CSF expression, were placed on a high‐fat diet or crossed with KKAy mice to study the susceptibility to obesity. The gene expression of macrophage markers in adipose tissue was examined. Results: The expression of M‐CSF was not significantly changed in mice on a high‐fat diet or in either type of genetic obesity (KKAy or ob/ob mice). No change in the degree of obesity or macrophage‐related gene expression (F4/80, CD68, and MCP‐1) in the adipose tissue was observed in op/+ mice compared with +/+ control mice, which were either treated with a high‐fat diet or crossed with KKAy mice. Discussion: This study demonstrated that there was no significant change in the expression of M‐CSF in the adipose tissue from obese mice and only a minor phenotypic change, such as macrophage infiltration, in the adipose tissue from op/+ mice, suggesting that M‐CSF does not play a major role in macrophage recruitment in the adipose tissue of obese mice.  相似文献   

11.
Objective: ob/ob mice have increased sensitivity to many of leptin's effects. The primary objective of this experiment was to determine whether ob/ob mice demonstrated increased sensitivity to leptin‐induced adipose tissue apoptosis. Research Methods and Procedures: Fifteen‐week‐old female ob/ob and Ob/? mice received 0 (saline), 2.5, or 10 μg/d leptin for 14 days through subcutaneous (sc) osmotic minipumps. Food intake (FI), body temperature, physical activity, and body weight were measured daily. Body composition and weights and adipose tissue apoptosis (percentage DNA fragmentation) of inguinal, parametrial, and retroperitoneal fat pads were determined at the end of the study. Results: FI decreases were more pronounced in ob/ob. Leptin (10 μg/d) decreased total FI 71% in ob/ob and 34% in Ob/? (p < 0.05). Body weight was decreased by both doses of leptin in ob/ob (p < 0.01) but was unchanged in Ob/?. Leptin increased body temperature in ob/ob but not in Ob/?. Physical activity was increased 400% by 10 μg/d leptin in ob/ob (p < 0.01) but decreased 13% in Ob/? (p < 0.01). Body fat content of ob/ob was reduced by both leptin doses, whereas only 10 μg/d leptin decreased body fat in Ob/?. Fat pad weights were decreased similarly by leptin in both genotypes. However, apoptosis was increased by leptin in all three fat pads in ob/ob, whereas Ob/? showed significant increases only in retroperitoneal. Discussion: ob/ob mice had greater overall sensitivity to leptin. Although ob/ob mice appeared to be more sensitive than Ob/? mice to leptin‐induced adipose tissue apoptosis, there were differences among adipose depots in responsiveness to leptin‐induced apoptosis.  相似文献   

12.
13.
The fat‐1 gene, derived from Caenorhabditis elegans, encodes for a fatty acid n‐3 desaturase. In order to study the potential metabolic benefits of n‐3 fatty acids, independent of dietary fatty acids, we developed seven lines of fat‐1 transgenic mice (C57/BL6) controlled by the regulatory sequences of the adipocyte protein‐2 (aP2) gene for adipocyte‐specific expression (AP‐lines). We were unable to obtain homozygous fat‐1 transgenic offspring from the two highest expressing lines, suggesting that excessive expression of this enzyme may be lethal during gestation. Serum fatty acid analysis of fat‐1 transgenic mice (AP‐3) fed a high n‐6 unsaturated fat (HUSF) diet had an n‐6/n‐3 fatty acid ratio reduced by 23% (P < 0.025) and the n‐3 fatty acid eicosapentaenoic acid (EPA) concentration increased by 61% (P < 0.020). Docosahexaenoic acid (DHA) was increased by 19% (P < 0.015) in white adipose tissue. Male AP‐3‐fat‐1 line of mice had improved glucose tolerance and reduced body weight with no change in insulin sensitivity when challenged with a high‐carbohydrate (HC) diet. In contrast, the female AP‐3 mice had reduced glucose tolerance and no change in insulin sensitivity or body weight. These findings indicate that male transgenic fat‐1 mice have improved glucose tolerance likely due to increased insulin secretion while female fat‐1 mice have reduced glucose tolerance compared to wild‐type mice. Finally the inability of fat‐1 transgenic mice to generate homozygous offspring suggests that prolonged exposure to increased concentrations of n‐3 fatty acids may be detrimental to reproduction. J. Cell. Biochem. 107: 809–817, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
Objective: Sustained exposure to lipids is deleterious for pancreatic islet function. This could be mediated through increased pancreatic fat following increased dietary fat and in obesity, which has implications for the onset of type 2 diabetes. The aims of this study were to determine changes in extent and composition of pancreatic, hepatic, and visceral fat in mice fed a high‐fat diet (HFD, 40% by weight) compared with a control diet (5% fat) of similar fatty acid composition, and to compare composition and extent of pancreatic fat in human type 2 diabetes. Methods and Procedures: Mice were fed HFD for 3 or 15 weeks. Human postmortem pancreas was examined from subjects with type 2 diabetes (n = 9) and controls (n = 7). Tissue lipid content and composition were determined by gas chromatography and pancreatic adipocyte infiltration quantified by morphometry. Results: Pancreatic triacylglycerol (TG) content was 20× greater (P < 0.05) in HFD mice and there were more pancreatic perilipin‐positive adipocytes compared with controls after 15 weeks. The proportions of 18:1n ?9 and 18:2n ?6 in pancreatic TG and the 20:4n ?6/18:2n ?6 ratio in phospholipids, were higher (both P < 0.05) after HFD compared with controls. Human pancreatic TG content was correlated with the proportion of pancreatic perilipin‐positive adipocytes (r = 0.64, P < 0.05) and associated with unsaturated fatty acid enrichment (P < 0.05). Discussion: Adipocyte infiltration in pancreatic exocrine tissue is associated with high‐fat feeding in mice and pancreatic TG content in humans. This alters the fatty acid milieu of the islet which could contribute to islet dysfunction.  相似文献   

16.
17.
Impaired insulin/IGF1 signalling has been shown to extend lifespan in model organisms ranging from yeast to mammals. Here we sought to determine the effect of targeted disruption of the insulin receptor (IR) in non‐neuronal tissues of adult mice on the lifespan. We induced hemizygous (PerIRKO+/?) or homozygous (PerIRKO?/?) disruption of the IR in peripheral tissue of 15‐weeks‐old mice using a tamoxifen‐inducible Cre transgenic mouse with only peripheral tissue expression, and subsequently monitored glucose metabolism, insulin signalling and spontaneous death rates over 4 years. Complete peripheral IR disruption resulted in a diabetic phenotype with increased blood glucose and plasma insulin levels in young mice. Although blood glucose levels returned to normal, and fat mass was reduced in aged PerIRKO?/? mice, their lifespan was reduced. By contrast, heterozygous disruption had no effect on lifespan. This was despite young male PerIRKO+/? mice showing reduced fat mass and mild increase in hepatic insulin sensitivity. In conflict with findings in metazoans like Caenorhabditis elegans and Drosophila melanogaster, our results suggest that heterozygous impairment of the insulin signalling limited to peripheral tissues of adult mice fails to extend lifespan despite increased systemic insulin sensitivity, while homozygous impairment shortens lifespan.  相似文献   

18.
Objective: This study was designed to test whether adiponectin plays a role in diet‐induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism Research Methods and Procedures: Forty C57BL/6J male mice were fed either a high‐fat (HF) or control diet for 4 months, and adiponectin, its receptors, and enzyme expression in liver and muscle tissue were measured. Results: Mice fed the HF diet exhibited significantly greater weight gain, abnormal oral glucose tolerance test curves, and elevated homeostasis model assessment of insulin resistance (5.3 ± 0.89 vs. 2.8 ± 0.39). A significant reduction of adiponectin RNA expression (51%) and protein levels (15%) was observed in the adipose tissue of HF animals; however, serum adiponectin levels did not differ between groups (7.12 ± 0.34 μg/mL vs. 6.44 ± 0.38 μg/mL). Expression of hepatic mRNA of AdipoR1 and AdipoR2 was reduced by 15% and 25%, respectively, in animals fed the HF diet. In contrast, receptor mRNA expression of AdipoR1 and AdipoR2 increased by 25% and 30%, respectively, in muscle tissue. No effect was found on hepatic adenosine monophosphate‐activated protein kinase expression; however, a significant reduction of phosphoadenosine monophosphate kinase levels in muscles was observed. Hepatic acetyl‐coenzyme A carboxylase was similar between groups, but in muscles, the inactive form phosphoacetyl‐coenzyme A carboxylase was significantly reduced (p < 0.05). Discussion: The HF diet led to decreased insulin sensitivity accompanied by impaired activity of adiponectin‐related enzymes in skeletal muscles but not in the liver. These results suggest that the HF diet has a tissue‐specific effect on adiponectin and associated enzyme expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号