首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G‐rich sequences can adopt four‐stranded helical structures, called G‐quadruplexes, that self‐assemble around monovalent cations like sodium (Na+) and potassium (K+). Whether similar structures can be formed from xeno‐nucleic acid (XNA) polymers with a shorter backbone repeat unit is an unanswered question with significant implications on the fold space of functional XNA polymers. Here, we examine the potential for TNA (α‐l ‐threofuranosyl nucleic acid) to adopt a four‐stranded helical structure based on a planar G‐quartet motif. Using native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) and solution‐state nuclear magnetic resonance (NMR) spectroscopy, we show that despite a backbone repeat unit that is one atom shorter than the backbone repeat unit found in DNA and RNA, TNA can self‐assemble into stable G‐quadruplex structures that are similar in thermal stability to equivalent DNA structures. However, unlike DNA, TNA does not appear to discriminate between Na+ and K+ ions, as G‐quadruplex structures form equally well in the presence of either ion. Together, these findings demonstrate that despite a shorter backbone repeat unit, TNA is capable of self‐assembling into stable G‐quadruplex structures.  相似文献   

2.
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.  相似文献   

3.
Therminator DNA polymerase is an efficient DNA-dependent TNA polymerase capable of polymerizing TNA oligomers of at least 80 nt in length. In order for Therminator to be useful for the in vitro selection of functional TNA sequences, its TNA synthesis fidelity must be high enough to preserve successful sequences. We used sequencing to examine the fidelity of Therminator-catalyzed TNA synthesis at different temperatures, incubation times, tNTP ratios and primer/template combinations. TNA synthesis by Therminator exhibits high fidelity under optimal conditions; the observed fidelity is sufficient to allow in vitro selection with TNA libraries of at least 200 nt in length.  相似文献   

4.
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.  相似文献   

5.
6.
As part of a selection strategy for artificial nucleic acids (XNA) (to be considered as potential new information systems in vivo), we have carried out a modelling study on cyclohexanyl nucleic acids (CNA) duplexes and hairpins. CNA may form a duplex as well as hairpin structures, having the carbocyclic nucleosides in the 4C1 conformation (with equatorial basis). The geometry of ds CNA is close to that of a HNA:RNA duplex. We demonstrated that CNA triphosphates function as a substrate for polymerases. Modelling experiments indicate that the monomers are probably presented to the polymerase in the 1C4 conformation.  相似文献   

7.
Xylo-Configured oligonucleotides (XNA) containing a novel conformationally restricted 2'-deoxy-2'-fluoro-beta-D-xylofuranosyl nucleotide monomer, a novel conformationally locked 2'-amino-2'-deoxy-2'-N,4'-C-methylene-beta-D-xylofuranosyl nucleotide monomer, and a known 2'-deoxy-beta-D-xylofuranosyl nucleotide monomer (XNA monomers) have been synthesized and their hybridization towards DNA and RNA complements studied. Thermal denaturation studies of nine-mer mixed-base sequences composed of a mixture of XNA monomers and DNA monomers revealed preferential hybridization towards RNA complements relative to DNA complements. For 14-mer homo-thymine XNAs containing thirteen XNA monomers, stable complexes towards single-stranded DNA and RNA were formed at pH 7. Gel-shift experiments revealed these complexes to involve at least two XNA strands per DNA or RNA target strand.  相似文献   

8.
Bridging the unmet need of efficient point-of-care testing (POCT) in biomedical engineering research and practice with the emerging development in artificial synthetic xeno nucleic acids (XNAs), this review summarized the recent development in paper-based POCT using XNAs as sensing probes. Alongside the signal transducing mode and immobilization methods of XNA probes, a detailed evaluation of probe performance was disclosed. With these new aspects, both researchers in synthetic chemistry / biomedical engineering and physicians in clinical practice could gain new insights in designing, manufacturing and choosing suitable reagents and techniques for POCT.  相似文献   

9.
10.
The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Mitigation benefits through the use of forest products are affected by product life cycles, which determine the duration of carbon storage in wood products and substitution benefits where emissions are avoided using wood products instead of other emissions‐intensive building products and energy fuels. Here we determined displacement factors for wood substitution in the built environment and bioenergy at the national level in Canada. For solid wood products, we compiled a basket of end‐use products and determined the reduction in emissions for two functionally equivalent products: a more wood‐intensive product vs. a less wood‐intensive one. Avoided emissions for end‐use products basket were weighted by Canadian consumption statistics to reflect national wood uses, and avoided emissions were further partitioned into displacement factors for sawnwood and panels. We also examined two bioenergy feedstock scenarios (constant supply and constrained supply) to estimate displacement factors for bioenergy using an optimized selection of bioenergy facilities which maximized avoided emissions from fossil fuels. Results demonstrated that the average displacement factors were found to be similar: product displacement factors were 0.54 tC displaced per tC of used for sawnwood and 0.45 tC tC?1 for panels; energy displacement factors for the two feedstock scenarios were 0.47 tC tC?1 for the constant supply and 0.89 tC tC?1 for the constrained supply. However, there was a wide range of substitution impacts. The greatest avoided emissions occurred when wood was substituted for steel and concrete in buildings, and when bioenergy from heat facilities and/or combined heat and power facilities was substituted for energy from high‐emissions fossil fuels. We conclude that (1) national‐level substitution benefits need to be considered within a systems perspective on climate change mitigation to avoid the development of policies that deliver no net benefits to the atmosphere, (2) the use of long‐lived wood products in buildings to displace steel and concrete reduces GHG emissions, (3) the greatest bioenergy substitution benefits are achieved using a mix of facility types and capacities to displace emissions‐intensive fossil fuels.  相似文献   

11.
We report on a simple method to rapidly generate very large libraries of genes encoding mutant proteins without the use of DNA amplification, and the application of this methodology in the construction of synthetic immunoglobulin variable heavy (VH) and light (Vκ) libraries. Four high quality, chemically synthesized polynucleotides (90–140 bases) were annealed and extended using T4 DNA polymerase. Following electroporation, >109 transformants could be synthesized within 1 day. Fusion to β‐lactamase and selection on ampicillin resulted in 3.7 × 108 VH and 6.9 × 108 Vκ clones highly enriched for full‐length, in‐frame genes. High‐throughput 454 DNA sequencing of >250,000 VH and Vκ genes from the pre‐ and post‐selection libraries revealed that, in addition to the expected reduction in reading‐frame shifts and stop codons, selection for functional expression also resulted in a statistical decrease in the cysteine content. Apart from these differences, there was a good agreement between the expected and actual diversity, indicating that neither oligonucleotide synthesis nor biological constrains due to protein synthesis of VH/Vκ‐β‐lactamase fusions introduce biases in the amino acid composition of the randomized regions. This methodology can be employed for the rapid construction of highly diverse libraries with the near elimination of PCR errors in invariant regions. Biotechnol. Bioeng. 2010; 106: 347–357. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
This article presents the first evidence that the DNA base analogue 1,3-diaza-2-oxophenoxazine, tCO, is highly fluorescent, both as free nucleoside and incorporated in an arbitrary DNA structure. tCO is thoroughly characterized with respect to its photophysical properties and structural performance in single- and double-stranded oligonucleotides. The lowest energy absorption band at 360 nm (ε = 9000 M1 cm1) is dominated by a single in-plane polarized electronic transition and the fluorescence, centred at 465 nm, has a quantum yield of 0.3. When incorporated into double-stranded DNA, tCO shows only minor variations in fluorescence intensity and lifetime with neighbouring bases, and the average quantum yield is 0.22. These features make tCO, on average, the brightest DNA-incorporated base analogue so far reported. Furthermore, it base pairs exclusively with guanine and causes minimal perturbations to the native structure of DNA. These properties make tCO a promising base analogue that is perfectly suited for e.g. photophysical studies of DNA interacting with macromolecules (proteins) or for determining size and shape of DNA tertiary structures using techniques such as fluorescence anisotropy and fluorescence resonance energy transfer (FRET).  相似文献   

13.
Bacterial pathogen control is important in seafood production. In this study, a Cu/Co/Ni ternary nanoalloy (Cu/Co/Ni TNA) was synthesized using the oleylamine reducing method. It was found that Cu/Co/Ni TNA greatly enhanced the chemiluminescence (CL) signal of the hydroxylamine‐O‐sulfonic acid (HOSA)–luminol system. The CL properties of Cu/Co/Ni TNA were investigated systemically. The possible CL mechanism also was intensively investigated. Based on the enhanced CL phenomenon of Cu/Co/Ni TNA, a Cu/Co/Ni TNA, penicillin, and anti‐L. monocytogenes (Listeria monocytogenes) antibody‐based sandwich complex assay for detection of L. monocytogenes was established. In this sandwich CL assay, penicillin was employed to capture and enrich pathogenic bacteria with penicillin‐binding proteins (PBPs) while anti‐L. monocytogenes antibody was adopted as the specific recognition molecule to recognize L. monocytogenes. L. monocytogenes was detected sensitively based on this new Cu/Co/Ni TNA–HOSA–luminol CL system. The CL intensity was proportional to the L. monocytogenes concentration ranging from 2.0 × 102 CFU ml?1 to 3.0 × 107 CFU ml?1 and the limit of detection wa 70 CFU ml?1. The reliability and potential applications of our method was verified by comparison with official methods and recovery tests in environment and food samples.  相似文献   

14.

Background  

The DNA-dependent RNA polymerase from T7 bacteriophage (T7 RNAP) has been extensively characterized, and like other phage RNA polymerases it is highly specific for its promoter. A combined in vitro / in vivo selection method has been developed for the evolution of T7 RNA polymerases with altered promoter specificities. Large (103 – 106) polymerase libraries were made and cloned downstream of variant promoters. Those polymerase variants that can recognize variant promoters self-amplify both themselves and their attendent mRNAs in vivo. Following RT / PCR amplification in vitro, the most numerous polymerase genes are preferentially cloned and carried into subsequent rounds of selection.  相似文献   

15.
Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error‐free DNA molecules and their libraries from error‐prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem‐solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error‐prone oligonucleotides are recursively combined in vitro, forming error‐prone DNA molecules; error‐free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error‐free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.  相似文献   

16.

Background

Cationic lipids are at present very actively investigated for gene transfer studies and gene therapy applications. Basically, they rely on the formation of DNA/lipid aggregates via electrostatic interactions between their cationic headgroup and the negatively charged DNA. Although their structure/activity relationships are not well understood, it is generally agreed that the nature of the positive headgroup impacts on their transfection activity. Thus, we have directed our efforts toward the development of cationic lipids with novel cationic moieties. In the present work, we have explored the transfection potential of the lipophilic derivatives of the aminoglycoside kanamycin A. Indeed, aminoglycosides, which are natural polyamines known to bind to nucleic acids, provide a favorable scaffold for the synthesis of a variety of cationic lipids because of their structural features and multifunctional nature.

Methods and results

We report here the synthesis of a cationic cholesterol derivative characterized by a kanamycin A headgroup and of its polyguanidinylated derivative. The amino‐sugar‐based cationic lipid is highly efficient for gene transfection into a variety of mammalian cell lines when used either alone or as a liposomal formulation with the neutral phospholipid dioleoylphosphatidylethanolamine (DOPE). Its polyguanidinylated derivative was also found to mediate in vitro gene transfection. In addition, colloidally stable kanamycin‐cholesterol/DOPE lipoplexes were found to be efficient for gene transfection into the mouse airways in vivo.

Conclusions

These results reveal the usefulness of cationic lipids characterized by headgroups composed of an aminoglycoside or its guanidinylated derivative for gene transfection in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

17.
18.
19.
We studied the evolution of the G gene in the new genotype ON1 of RSV detected from patients with acute respiratory infection in Japan. Phylogenetic analyses and the evolutionary timescale were obtained by the Bayesian MCMC method. We also analyzed p‐distance and positive selection sites. A new genotype ON1 emerged around 2001. The evolution rate was rapid (3.57 × 10?3 substitutions/site per year). The p‐distance was short and no positive selection site was found in the present strains. These results suggested that a new genotype ON1 of RSV‐A emerged approximately10 years ago and spread to some countries with a high evolution rate.
  相似文献   

20.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号