首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. In terms of restoration planning, the analysis of natural regeneration processes represents a valuable starting point for the selection of suitable species to be used. This paper aims to identify colonizing key species among the pioneer vegetation of limestone quarries in Lebanon, to identify potential restoration strategies in terms of reconstitution of the pre‐mining vegetation cover. Characteristics of the major ground colonizers after disturbance were identified in a representative quarry in the thermo‐Mediterranean biozone. The floristic inventories resulted in a matrix of cover values of 107 species × 14 plots. Correspondence analyses were used to pinpoint similarities in the distribution of key species among the different environmental characteristics of sites. The main results reveal a heterogeneous floristic composition along the regeneration gradient, where annual R‐strategy taxa such as Inula viscosa and Ainsworthia cordata dominate on very perturbed and degraded sites. Less degraded areas within the quarry were rich in herbaceous perennial or shrub species such as Geranium dissectum, Stachys distans, Salvia triloba and Ptilostemon chamaepeuce. On relatively non‐degraded areas woody and shrub perennials such as Pinus brutia, Pistacia palaestina and Quercus calliprinos dominate, along with less stress tolerant taxa such as Arbutus andrachne and Cistus creticus. Species to be used in restoration projects should be chosen from among the local vegetation, according to frequency of occurrence during the whole succession process which will reflect their adaptability to local conditions and their relevance to restoration objectives.  相似文献   

2.
Aim We developed an ecosystem classification within a 110,000‐ha Arizona Pinus ponderosa P. & C. Lawson (ponderosa pine) landscape to support ecological restoration of these forests. Specific objectives included identifying key environmental variables constraining ecosystem distribution and comparing plant species composition, richness and tree growth among ecosystems. Location The Coconino National Forest and the Northern Arizona University Centennial Forest, in northern Arizona, USA. Methods We sampled geomorphology, soils and vegetation on 66 0.05‐ha plots in open stands containing trees of pre‐settlement (c. 1875) origin, and on 26 plots in dense post‐settlement stands. Using cluster analysis and ordination of vegetation and environment matrices, we classified plots into ecosystem types internally similar in environmental and vegetational characteristics. Results We identified 10 ecosystem types, ranging from dry, black cinders/Phacelia ecosystems to moist aspen/Lathyrus ecosystems. Texture, organic carbon and other soil properties reflecting the effects of parent materials structured ecosystem distribution across the landscape, and geomorphology was locally important. Plant species composition was ecosystem‐specific, with C3Festuca arizonica Vasey (Arizona fescue), for instance, abundant in mesic basalt/Festuca ecosystems. Mean P. ponderosa diameter increments ranged from 2.3–4.3 mm year?1 across ecosystems in stands of pre‐settlement origin, and the ecosystem classification was robust in dense post‐settlement stands. Main conclusions Several lines of evidence suggest that although species composition may have been altered since settlement, the same basic ecosystems occurred on this landscape in pre‐settlement forests, providing reference information for ecological restoration. Red cinders/Bahia ecosystems were rare historically and > 30% of their area has been burned by crown fires since 1950, indicating that priority could be given to restoring this ecosystem's remaining mapping units. Ecosystem classifications may be useful as data layers in gap analyses to identify restoration and conservation priorities. Ecosystem turnover occurs at broad extents on this landscape, and restoration must accordingly operate across large areas to encompass ecosystem diversity. By incorporating factors driving ecosystem composition, this ecosystem classification represents a framework for estimating spatial variation in ecological properties, such as species diversity, relevant to ecological restoration.  相似文献   

3.
The objective of this study was to identify soil nutrient availability conditions that would allow the establishment of key species of the Molinia caerulea‐Cirsium dissectum fen meadow. The restoration site was a species‐poor agriculturally improved pasture that had received no inorganic fertilizer for greater than 13 years. Treatments designed to reduce site fertility included: cutting and removal of herbage, cultivation, fallowing and topsoil removal. Straw and/or lignitic‐clay were incorporated as soil amendment treatments. Cirsio‐Molinietum species were either sown or planted as seedlings on treated plots. Neither soil nitrogen nor potassium availability, per se, appeared to limit the establishment of Cirsio‐Molinietum species, whereas enhanced phosphorus availability did. Removal of the top 15–20 cm of soil reduced the total soil phosphorus amount by about 85 percent and depleted plant P availability. Nutrient‐poor and relatively calcium‐enriched soil exposed by topsoil removal allowed the development of a community with affinities to the Cirsio‐Molinietum typical fen meadow. Redundancy analysis indicated the existence of marked vegetational gradients within the topsoil removal treatments that were influenced by the straw and the lignitic‐clay amendments. The way in which these two amendments influenced edaphic conditions were unclear. Where the topsoil was not removed the vegetation became dominated by a few competitive species and although many of the planted Cirsio‐Molinietum species were still present after four years, they were found only in trace amounts. Removal of most of the soil organic matter was a practical success in that it created suitable edaphic conditions for all the planted Cirsio‐Molinietum species to remain well established.  相似文献   

4.
Restoration projects may have broad and complex ecological goals that require distinct and integrative measures for evaluating restoration development and success. However, most studies usually evaluate structural and species composition parameters, with less emphasis on ecological processes and functioning. The main objective of this study is to use an integrated approach that considers structural and floristic parameters as well as ecological processes and functional traits to evaluate and identify the parameters that most differentiate forests undergoing restoration and their reference sites. Additionally, we tested if the recovery of ecosystem functionality happens at the same rate as the recovery of vegetation structure. We performed the study in three 10‐year‐old restoration and three adjacent reference areas located in the south of Brazil (subtropical forest). We sampled a total of 15 plots (100 m2 in size) per treatment, per site and collected data of trees, natural regeneration, litter stock, decomposition, detritivory, and litter and soil C:N ratio. We also used a multifunctionality index to account for the broad functionality of the ecosystem. Results showed that forests undergoing restoration had lower values of vegetation structure and multifunctionality, indicating that restoration sites have not yet achieved values similar to the reference ecosystem. Values for species richness and functional diversity, however, were higher in restoration sites. Moreover, even though values were lower for multifunctionality, differences toward reference sites were less pronounced than we expected when compared to values of vegetation structure, showing that ecological processes may recover even before the full recovery of aboveground vegetation.  相似文献   

5.
Abstract. Reclamation of former, degraded forest lands occupied by Imperata cylindrica is one of the crucial environmental and forestry issues in the humid tropics, notably Southeast Asia. We suggest that it is possible to gradually restore the original natural forest cover with the help of a sacrifice fallow crop of fast-growing exotic tree species. Recently, a set of suitable fast-growing plantation tree species has been identified and stand establishment methods developed for this purpose. We assessed the regeneration of natural vegetation in stands of different plantation tree species and evaluated the ecological impact of species composition in the plantation understorey. PCA ordination, regression analysis and analysis of covariance were applied at different stages of the study. We found a marked vegetational resemblance between stands dominated by Acacia mangium: they had the highest number of indigenous trees in their understorey, whereas stands of other plantation trees supported more diverse grass and herb vegetation. A high proportion of evergreen woody vegetation reduces the risk of fire and grass competition and enhances secondary succession towards natural forest.  相似文献   

6.
To understand vegetation development during the ecological succession of rehabilitated quarries, floristic composition and structure were evaluated at different restoration phases on three quarries in Hong Kong that were planted with exotic woody species over the course of 2–14 years. A total of 113 species, of which 82 were woody species, were recorded. Exotic species dominated the overstory, and species number, richness, and diversity increased with age. Some light‐demanding early successional species were becoming dominant in the overstory vegetation at the older phases of revegetation. These species could be potential candidates for early enrichment planting with Acacia spp. Common secondary forest species occurred naturally in the understory vegetation, and were more abundant and dominant after 10 years of ecological development. The most successful restorations were on scree slopes using leguminous Acacia spp. as nurse species.  相似文献   

7.
The restoration of areas invaded by non‐native plants is challenging as invasive plants may affect both biotic and abiotic components of ecosystems, leading to impacts that constrain recolonization by native species after invaders are eliminated. In such a scenario, restoration techniques as topsoil transposition might accelerate colonization by native species in forests. Hedychium coronarium J. Koenig (Zingiberaceae) is a Himalayan herbaceous rhizomatous plant recognized as invasive in several countries. This study aimed to experimentally evaluate the response of plant assemblages to topsoil transposition on a site invaded by H. coronarium after chemical control. Four treatments were applied: chemical control integrated with topsoil transposition, chemical control of H. coronarium alone, topsoil transposition alone, and no intervention (control). Plots were evaluated prior to the application of treatments and then monthly for 11 months after treatments. Parameters were measured for H. coronarium (number of ramets, ramet height, and cover) and other species (species richness, abundance, and cover). Plots treated with chemical control (regardless of topsoil transposition) were similar in terms of all parameters measured and species composition, with dominance of herbs and shrubs. Plots managed solely with topsoil transposition had lower species richness, abundance, and cover, but more diverse life‐forms, being equally rich in climbers, trees, and herbs. Chemical control was effective to control invasion by H. coronarium and increase species richness and abundance on the managed site. Topsoil transposition promoted colonization by species that might accelerate restoration.  相似文献   

8.
Ecosystem restoration frequently involves the reintroduction of plant material in the degraded ecosystem. When there are no plant nurseries or seeds available on the market, the plant material has to be harvested in the wild, in a “donor ecosystem.” A comprehensive assessment of donor ecosystem recovery is lacking, especially for Sphagnum‐dominated donor peatlands, where all top vegetation is harvested mechanically with different practices. We aimed to evaluate (1) the regeneration of vegetation, especially of Sphagnum mosses, to determine which harvesting practices are best to enhance recovery and (2) the influence of the site hydrological conditions and meteorological variables of the first complete growing season postharvesting on peat moss regeneration. Twenty‐five donor sites covering a 17‐year chronosequence (harvested 1–17 years ago) were inventoried along with 15 associated natural reference sites located in Quebec, New Brunswick, and Alberta, Canada. All donor sites aged 10 years or more were dominated by Sphagnum mosses, though plant composition varied between donor and their associated reference sites because of the wetter conditions at harvested donor sites. Harvesting practices strongly influenced donor site recovery, showing that the skills of the practitioner are an essential ingredient. Harvesting practices minimizing donor site disturbances are recommended, such as the choice of the adequate donor site (localization, hydrologic conditions, vegetation), the use of less disruptive methods, and harvesting when the soil is deeply frozen. This study demonstrated that harvesting surface plant material for peatland restoration is not detrimental towards the recovery of near‐natural peatland ecosystems.  相似文献   

9.
Specialist plant species in calcareous sandy grasslands are threatened by acidification and high nutrient levels in the topsoil. We investigated whether topsoil removal and soil perturbation in degraded sandy grasslands could lead to establishment of specialist species belonging to the threatened xeric sand calcareous grassland habitat. Restoration actions performed in 2006 resulted in increased soil pH and reduced nitrogen availability. We found early colonisztion of the perennial key species Koeleria glauca after both deep perturbation and topsoil removal, and high seedling establishment in topsoil removal plots 5 and 6 years following the restoration treatment (2011–2012). After topsoil removal, overall vegetation composition in 2012 had developed toward the undegraded community, with target species accounting for 20% of the community after topsoil removal, compared to 30% in the undegraded vegetation, and less than 1% in untreated controls. Deep perturbation led to 7% target species, while there were almost no effects of shallow perturbation 6 years following treatment. These results demonstrate that topsoil removal can promote colonization of target species of calcareous sandy grassland and highlights the importance of considering the regeneration niche for target species when implementing restoration measures .  相似文献   

10.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   

11.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species.  相似文献   

12.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions.  相似文献   

13.
ABSTRACT

This paper presents the results of a phytosociological survey carried out in the Lazio region (central Italy) to investigate the vegetation and conservation status of brackish habitats. Eighteen vegetation types are described, belonging to 8 alliances, 5 orders and 5 classes of vegetation. A new association and an association previously unrecorded in Italy, both assigned to the Frankenietalia pulverulentae, have been recognized. The occurrence of important floristic and vegetational features, and the potential for the development and restoration of typical ecological sequences suggest the implementation or the enhancement of conservation activities in all of the brackish sites surveyed.  相似文献   

14.
15.
Tropical grassy biomes have been widely neglected for conservation and, after unplanned land use conversion, ecological restoration becomes urgent. The majority of interventions have been based on the misapplication of forest restoration techniques, because there are no validated techniques to restore the species‐rich ground layer. In search for innovative techniques to restore the herbaceous layer of the cerrado vegetation, we carried out an experiment based upon topsoil and hay transfer, in the state of São Paulo, Brazil. The restoration treatments were: (1) transfer of topsoil collected at the end of the dry season; (2) topsoil collected at the end of the rainy season; (3) transfer of hay collected at the end of the dry season; (4) topsoil + hay collected at the end of the dry season; and (5) control. We used an old‐growth grassland as source of material and as reference ecosystem to assess the efficacy of the restoration techniques applied to an area severely degraded after invasion by African grasses. After 211 days, hay transfer apparently inhibited germination and did not contribute to grassland vegetation recovery. Topsoil transfer, however, was effective at reintroducing herbaceous plants, including target species. The season of topsoil collection mattered: material collected at the end of the rainy season provided better results in terms of density and richness of the restored community than that from the dry season. The remaining challenge is to find sources of topsoil not invaded by exotic grasses in large enough amounts to support restoration initiatives without jeopardizing the source ecosystems.  相似文献   

16.
Abstract. Snow patch vegetation in Australia is rare, being restricted to the relatively small area of alpine and subalpine country in the highlands of southeastern Australia. Snow patch vegetation occurs on steeper, sheltered southeastern slopes, where snow persists until well into the growing season (December/January). We surveyed the vegetation of 33 snow patch sites in the alpine and subalpine tracts of the Bogong High Plains, within the Alpine National Park, in Victoria. The vegetation was dominated by herbs and graminoids, with few shrubs and mosses. Major structural assemblages identified included closed herb‐fields dominated by Celmisia spp, and grasslands dominated by Poa fawcettiae or Poa costiniana. These assemblages occurred on mineral soils. Open herb‐fields dominated by Caltha introloba and several sedge species occurred on rocky and stony substrata. Vegetation‐environment relationships were explored by ordination and vector fitting. There was significant variation in the floristic composition of snow patch vegetation as a function of duration of snow cover, altitude, slope and site rockiness. Alpine sites were floristically distinct from subalpine sites, with a greater cover of Celmisia spp. and a lesser cover of low shrubs in the former. There was floristic variation within some snow patches as a function of slope position (upper, middle or lower slope) but this was not consistent across sites. The current condition of snow patch vegetation on the Bogong High Plains is degraded, with bare ground exceeding 20% cover at most sites. Snow patch vegetation is utilized preferentially by domestic cattle, which graze parts of the Bogong High Plains in summer. Such grazing is a potential threat to this rare vegetation type.  相似文献   

17.
Aim We analysed lake‐sediment pollen records from eight sites in southern New England to address: (1) regional variation in ecological responses to post‐glacial climatic changes, (2) landscape‐scale vegetational heterogeneity at different times in the past, and (3) environmental and ecological controls on spatial patterns of vegetation. Location The eight study sites are located in southern New England in the states of Massachusetts and Connecticut. The sites span a climatic and vegetational gradient from the lowland areas of eastern Massachusetts and Connecticut to the uplands of north‐central and western Massachusetts. Tsuga canadensis and Fagus grandifolia are abundant in the upland area, while Quercus, Carya and Pinus species have higher abundances in the lowlands. Methods We collected sediment cores from three lakes in eastern and north‐central Massachusetts (Berry East, Blood and Little Royalston Ponds). Pollen records from those sites were compared with previously published pollen data from five other sites. Multivariate data analysis (non‐metric multi‐dimensional scaling) was used to compare the pollen spectra of these sites through time. Results Our analyses revealed a sequence of vegetational responses to climate changes occurring across southern New England during the past 14,000 calibrated radiocarbon years before present (cal yr bp ). Pollen assemblages at all sites were dominated by Picea and Pinus banksiana between 14,000 and 11,500 cal yr bp ; by Pinus strobus from 11,500 to 10,500 cal yr bp ; and by P. strobus and Tsuga between 10,500 and 9500 cal yr bp . At 9500–8000 cal yr bp , however, vegetation composition began to differentiate between lowland and upland sites. Lowland sites had higher percentages of Quercus pollen, whereas Tsuga abundance was higher at the upland sites. This spatial heterogeneity strengthened between 8000 and 5500 cal yr bp , when Fagus became abundant in the uplands and Quercus pollen percentages increased further in the lowland records. The differentiation of upland and lowland vegetation zones remained strong during the mid‐Holocene Tsuga decline (5500–3500 cal yr bp ), but the pattern weakened during the late‐Holocene (3500–300 cal yr bp ) and European‐settlement intervals. Within‐group similarity declined in response to the uneven late‐Holocene expansion of Castanea, while between‐group similarity increased due to homogenization of the regional vegetation by forest clearance and ongoing disturbances. Main conclusions The regional gradient of vegetation composition across southern New England was first established between 9500 and 8000 cal yr bp . The spatial heterogeneity of the vegetation may have arisen at that time in response to the development or strengthening of the regional climatic gradient. Alternatively, the differentiation of upland and lowland vegetation types may have occurred as the climate ameliorated and an increasing number of species arrived in the region, arranging themselves in progressively more complex vegetation patterns across relatively stationary environmental gradients. The emergence of a regional vegetational gradient in southern New England may be a manifestation of the increasing number of species and more finely divided resource gradient.  相似文献   

18.
19.
This paper documents changes in the floristic composition of Eucalyptus marginata Donn (jarrah) woodlands over 7 years of recovery from continual, intensive livestock grazing. In remnants of native woodland left after agricultural clearing, which have been subjected to livestock grazing, comparisons were made between the floristics of fenced exclosure plots and open plots that continued to be grazed. The vegetation in nearby remnants, which had not been subjected to livestock grazing, was also surveyed. An initial increase in annual exotic pasture species after grazing relief was only temporary and highly influenced by fluctuations in annual climatic patterns, particularly rainfall distribution and abundance. Subsequent years saw a decrease in exotic annuals in exclosure plots and an increase in native perennials, in a trend towards becoming more floristically similar to the ungrazed sites. Germination of overstorey species was observed in the exclosure plots, however, development of seedlings and saplings was sparse. Results indicate that for jarrah woodland in southwestern Australia, natural regeneration is possible after the removal of livestock, with the return (within 6 years) of native species richness to levels similar to those found in ungrazed vegetation. Re‐establishment of cover, however, appears to take longer. The floristic dynamics are described in terms of a nonequilibrium model. Two vegetation states exist, degraded remnants with an understorey dominated by annual species, and ungrazed vegetation with an understorey dominated by perennial shrubs and herbs. The former state is maintained by continual heavy grazing by livestock. Upon relief from grazing, the vegetation undergoes a transition towards floristic similarity to ungrazed vegetation. After 6 years, vegetation change in the exclosure plots appears to be continuing and therefore it is still in transition.  相似文献   

20.
Nonnative conifers are widespread in the southern hemisphere, where their use as plantation species has led to adverse ecosystem impacts sometimes intensified by invasion. Mechanical removal is a common strategy used to reduce or eliminate the negative impacts of nonnative conifers, and encourage native regeneration. However, a variety of factors may preclude active ecological restoration following removal. As a result, passive restoration – unassisted natural vegetation regeneration – is common following conifer removal. We asked, ‘what is the response of understorey cover to removal of nonnative conifer stands followed by passive restoration?' We sampled understorey cover in three site types: two‐ to ten‐year‐old clearcuts, native forest and current plantations. We then grouped understorey species by origin (native/nonnative) and growth form, and compared proportion and per cent cover of these groups as well as of bare ground and litter between the three site types. For clearcuts, we also analysed the effect of time since clearcut on the studied variables. We found that clearcuts had a significantly higher average proportion of nonnative understorey vegetation cover than native forest sites, where nonnative vegetation was nearly absent. The understorey of clearcut sites also averaged more overall vegetation cover and more nonnative vegetation cover (in particular nonnative shrubs and herbaceous species) than either plantation or native forest sites. Notably, 99% of nonnative shrub cover in clearcuts was the invasive nonnative species Scotch broom (Cytisus scoparius). After ten years of passive recovery since clearcutting, the proportion of understorey vegetation cover that is native has not increased and remains far below the proportion observed in native forest sites. Reduced natural regeneration capacity of the native ecosystem, presence of invasive species in the surrounding landscape and land‐use legacies from plantation forestry may inhibit native vegetation recovery and benefit opportunistic invasives, limiting the effectiveness of passive restoration in this context. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号